已知拋物線經(jīng)過A(2,0). 設(shè)頂點(diǎn)為點(diǎn)P,與x軸的另一交點(diǎn)為點(diǎn)B.

(1)求b的值,求出點(diǎn)P、點(diǎn)B的坐標(biāo);

(2)如圖,在直線 上是否存在點(diǎn)D,使四邊形OPBD為平行四邊形?若存在,求出點(diǎn)D的坐

標(biāo);若不存在,請(qǐng)說明理由;

(3)在x軸下方的拋物線上是否存在點(diǎn)M,使△AMP≌△AMB?如果存在,試舉例驗(yàn)證你的猜想;如果不存在,試說明理由.

 

【答案】

(1),P的坐標(biāo)為(4,),B的坐標(biāo)是(6,0)(2)D點(diǎn)的坐標(biāo)為(2, )(3)存在,證明見解析

【解析】解:(1)∵拋物線經(jīng)過A(2,0),

,解得。

∴拋物線的解析式為

∴頂點(diǎn)P的坐標(biāo)為(4,)。

令y=0,得,解得。

∴點(diǎn)B的坐標(biāo)是(6,0)。

(2)在直線 上存在點(diǎn)D,使四邊形OPBD為平行四邊形。理由如下:

設(shè)直線PB的解析式為,把B(6,0),P(4, )分別代入,得

 , 解得。

       ∴直線PB的解析式為。

       又∵直線OD的解析式為

       ∴直線PB∥OD。

       設(shè)直線OP的解析式為,把P(4, )代入,得

  ,解得

如果OP∥BD,那么四邊形OPBD為平行四邊形。

設(shè)直線BD的解析式為,將B(6,0)代入,得

,解得。

∴直線BD的解析式為。

聯(lián)立方程組,解得。

∴D點(diǎn)的坐標(biāo)為(2, )。

           (3)符合條件的點(diǎn)M存在。驗(yàn)證如下:

過點(diǎn)P作x軸的垂線,垂足為為C,

則PC=,AC=2,

由勾股定理,可得AP=4,PB=4。

又∵AB=4,∴△APB是等邊三角形。

作∠PAB的平分線交拋物線于M點(diǎn),連接PM,BM。

∵AM=AM,∠PAM=∠BAM,AB=AP,∴△AMP≌△AMB.(SAS)。

因此即存在這樣的點(diǎn)M,使△AMP≌△AMB.。

(1)由拋物線經(jīng)過A(2,0),代入即可求出b的值;從而得出拋物線的解析式,化為頂點(diǎn)式即可求出頂點(diǎn)P的坐標(biāo);令y=0,即可求出點(diǎn)B的坐標(biāo)。

    (2)用待定系數(shù)法,求出直線PB、BD的解析式,聯(lián)立,解之即得點(diǎn)D的坐標(biāo)。

(3)由勾股定理求出AP、BP和AB的長(zhǎng),證出△APB是等邊三角形,即可作BP的中垂線AM交BP于點(diǎn)M,點(diǎn)M即為所求。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(-4,0),B(0,-4),
C(2,0)三點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S.
求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線y=-x上的動(dòng)點(diǎn),判斷有幾個(gè)位置能夠使得點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線經(jīng)過點(diǎn)A(4,0)、B(1,-6)和原點(diǎn).求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xoy中,已知拋物線經(jīng)過點(diǎn)A(0,4),B(1,0),C(5,0),拋物線對(duì)稱軸l與x軸相交于點(diǎn)M.
(1)求拋物線的解析式和對(duì)稱軸;
(2)點(diǎn)P在拋物線上,且以A、O、M、P為頂點(diǎn)的四邊形四條邊的長(zhǎng)度為四個(gè)連續(xù)的正整數(shù),請(qǐng)你直接寫出點(diǎn)P的坐標(biāo);
(3)連接AC.探索:在直線AC下方的拋物線上是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請(qǐng)你求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

根據(jù)下列條件,求二次函數(shù)的關(guān)系式
(1)已知拋物線的頂點(diǎn)在(1,-2),且過點(diǎn)(2,3);
(2)已知拋物線經(jīng)過(2,0)、(0,-2)和(-2,3)三點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線經(jīng)過A(-2,0),B(-3,3)及原點(diǎn)O,頂點(diǎn)為C.
(1)求拋物線的函數(shù)解析式;
(2)求拋物線的對(duì)稱軸和C點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案