【題目】研究問題:一個不透明的盒中裝有若干個白球,怎樣估算白球的數(shù)量?

操作方法:先從盒中摸出8個球,畫上記號放回盒中,再進行摸球?qū)嶒灒驅(qū)嶒灥囊螅合葦嚢杈鶆,每次摸出一個球,放回盒中,再繼續(xù).

統(tǒng)計結(jié)果如表:

摸球的次數(shù)n

100

200

300

500

800

1000

摸到有記號球的次數(shù)m

25

44

57

105

160

199

摸到有記號球的頻率

0.25

0.22

0.19

0.21

0.20

0.20

(1)請你完成上表中數(shù)據(jù),并估計摸到有記號球的概率是多少?

(2)估計盒中共有球多少個?沒有記號球有多少個?

【答案】(1)0.2;(2)32個.

【解析】

本題要先根據(jù)已知條件求出摸有記號球的概率,再計算即可.

解:(1)根據(jù)105÷500=0.21,160÷800=0.2,199÷1000≈0.2,

故摸到有記號球的概率是:0.2;

(2)根據(jù)圖表可以得出摸到有記號球的概率是0.2,

故盒中共有球:=0.2,

解得:x=40,

故沒有記號球有40﹣8=32個.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一元二次方程ax2+bx+c=0 的兩根 x1,x2均為正數(shù),其中x1>x2,且滿足1<x1﹣x2<2,那么稱這個方程有友好根”.

(1)方程(x﹣)(x﹣)=0_____友好根(填:“沒有”);

(2)已知關(guān)于x x2﹣(t﹣1)x+t﹣2=0友好根,求 t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y=﹣,下列結(jié)論:圖象必經(jīng)過點(﹣3,1);圖象在第二,四象限內(nèi);yx的增大而增大;當(dāng)x>﹣1時,y>3.其中錯誤的結(jié)論有( 。

A. ①④ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,AB=AC,AB為直徑作半圓OBC于點D,連接AD,過點DDEAC,垂足為點E,AB的延長線于點F

1)求證EF是⊙O的切線

2)如果⊙O的半徑為5,sinADE=,BF的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形為平行四邊形,為坐標(biāo)原點,,將平行四邊形繞點逆時針旋轉(zhuǎn)得到平行四邊形,點的延長線上,點落在軸正半軸上.

(1)證明:是等邊三角形:

(2)平行四邊形繞點逆時針旋轉(zhuǎn)的對應(yīng)線段為,的對應(yīng)點為

①直線軸交于點,為等腰三角形,求點的坐標(biāo):

②對角線在旋轉(zhuǎn)過程中設(shè)點坐標(biāo)為,當(dāng)點軸的距離大于或等于時,求的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,,點是邊上的動點(含端點,),連結(jié),以所在直線為對稱軸作點的對稱點,連結(jié),,,,點,分別是線段,的中點,連結(jié),

1)求證:四邊形是菱形;

2)若四邊形的面積為,求的長;

3)以其中兩邊為鄰邊構(gòu)造平行四邊形,當(dāng)所構(gòu)造的平行四邊形恰好是菱形時,這時該菱形的面積是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一副三角板如圖放置,E是AB的中點,連接CE、DE、CD,F(xiàn)是CD的中點,連接EF.若AB=8,則SCEF_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點,點.已知拋物線是常數(shù)),頂點為.

(Ⅰ)當(dāng)拋物線經(jīng)過點時,求頂點的坐標(biāo);

(Ⅱ)若點軸下方,當(dāng)時,求拋物線的解析式;

(Ⅲ) 無論取何值,該拋物線都經(jīng)過定點.當(dāng)時,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,直線ykx+2與坐標(biāo)軸交于A、B兩點,OA=4,點Cx軸正半軸上的點,且OCOB,過點CAB的垂線,交y軸于點D,拋物線yax2+bx+cA、BC三點.

(1)求拋物線函數(shù)關(guān)系式;

(2)如圖②,點P是射線BA上一動點(不與點B重合),連接OP,過點OOP的垂線交直線CD于點Q.求證:OPOQ;

(3)如圖③,在(2)的條件下,分別過PQ兩點作x軸的垂線,分別交x軸于點E、F,交拋物線于點MN,是否存在點P的位置,使以P、Q、MN為頂點的四邊形為平行四邊形?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案