將拋物線向左平移2個單位,再向上平移2個單位,得到的拋物線解析式為
A.B.
C.D.
A.

試題分析:∵拋物線向左平移2個單位,向上平移2個單位,
∴平移后的拋物線的頂點(diǎn)坐標(biāo)是(-2,1),
∴平移后的拋物線解析式為
故選A.
考點(diǎn): 二次函數(shù)圖象與幾何變換.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直角坐標(biāo)系中Rt△ABO,其頂點(diǎn)為A(0, 1)、B(2, 0)、O(0, 0),將此三角板繞原點(diǎn)O逆時針旋轉(zhuǎn)90°,得到Rt△A′B′O.

(1)一拋物線經(jīng)過點(diǎn)A′、B′、B,求該拋物線的解析式;
(2)設(shè)點(diǎn)P是在第一象限內(nèi)拋物線上的一動點(diǎn),是否存在點(diǎn)P,使四邊形PB′A′B的面積是△A′B′O面積4倍?若存在,請求出P的坐標(biāo);若不存在,請說明理由.
(3)在(2)的條件下,試指出四邊形PB′A′B是哪種形狀的四邊形?并寫出四邊形PB′A′B的兩條性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將二次函數(shù)的圖像向下平移1個單位后,它的頂點(diǎn)恰好落在軸上,則   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+3的頂點(diǎn)為M(2,﹣1),交x軸與A、B兩點(diǎn),交y軸于點(diǎn)C,其中點(diǎn)B的坐標(biāo)為(3,0).

(1)求該拋物線的解析式;
(2)設(shè)經(jīng)過點(diǎn)C的直線與該拋物線的另一個交點(diǎn)為D,且直線CD和直線CA關(guān)于直線CB對稱,求直線CD的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

對于每個x,函數(shù)y是y1=-x+6,y2=-2x2+4x+6這兩個函數(shù)的較小值,則函數(shù)y的最大值是
A.3B.4  C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線軸相交于A、B兩點(diǎn),與軸相交于點(diǎn)C,若已知B點(diǎn)的坐標(biāo)為B(8,0).

(1)求拋物線的解析式及其對稱軸方程;
(2)連接AC、BC,試判斷△AOC與△COB是否相似?并說明理由;
(3)M為拋物線上BC之間的一點(diǎn),N為線段BC上的一點(diǎn),若MN∥軸,求MN的最大值;
(4)在拋物線的對稱軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD邊長是16 cm,P是AB上任意一點(diǎn)(與A、B不重合),QP⊥DP.設(shè)AP="x" cm,BQ="y" cm.試求出y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖是二次函數(shù)y=ax2+bx+c圖像的一部分,其對稱軸是直線x=-1,且過點(diǎn)(-3,0),下列說法:①abc>0;②2a-b=0;③4a+2b+c<0;④若(-5,y1),(2.5,y2)是拋物在線兩點(diǎn),則y1>y2,其中正確的是(  )
A.②B.②③C.②④D.①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=x+4x+5是由拋物線y=x+1經(jīng)過某種平移得到,則這個平移可以表述為(      )
A.向上平移2個單位B.向左平移2個單位
C.向下平移4個單位D.向右平移2個單位

查看答案和解析>>

同步練習(xí)冊答案