【題目】廣西“稻魚綜合養(yǎng)殖”符合生態(tài)養(yǎng)殖,綠色發(fā)展.某稻魚綜合養(yǎng)殖戶計(jì)劃購買甲,乙兩種禾花魚魚苗,經(jīng)調(diào)查,得到以下信息:
購買重量小于40 kg | 購買重量不小于40 kg | |
甲魚苗 | 原價(jià)銷售 | 打七折銷售 |
乙魚苗 | 原價(jià)銷售 | 打八折銷售 |
如果購買10 kg的甲魚苗和5 kg的乙魚苗需用700元,如果購買20 kg的甲魚苗和15 kg的乙魚苗需用1600元.
(1)甲魚苗和乙魚苗的單價(jià)各是多少元?
(2)現(xiàn)決定購買甲,乙兩種魚黃共90 kg,其中,乙魚苗的重量不大于甲魚苗重量的2倍,設(shè)購買甲魚苗a kg(),求該養(yǎng)殖戶購買這批魚苗的總費(fèi)用W與a之間的函數(shù)解析式;
(3)在(2)的條件下,請(qǐng)?jiān)O(shè)計(jì)一種購買方案,使所需總費(fèi)用最低,并求出最低總費(fèi)用.
【答案】(1)甲魚苗價(jià)格為50元/kg,乙魚苗價(jià)格為40元/kg;(2)①當(dāng)時(shí), ;②當(dāng)時(shí), ;(3)當(dāng)購買甲魚苗40 kg,乙魚苗50 kg時(shí),所需總費(fèi)用最低,最低總費(fèi)用為3000元
【解析】
(1)根據(jù)題意列二元一次方程組進(jìn)行解答;
(2)根據(jù)兩種魚苗重量之間的關(guān)系,列出不等式(組)求出購買甲魚苗重量a的取值范圍,再依據(jù)a的取值范圍分段考慮總費(fèi)用W與a的關(guān)系式;
(3)根據(jù)一次函數(shù)的性質(zhì),分段討論,確定當(dāng)a取何值時(shí),費(fèi)用W最低,最后綜合確定費(fèi)用W最低時(shí)的購買方案.
解:(1)設(shè)甲魚苗價(jià)格為x元/kg,乙魚苗價(jià)格為y元/kg,
由題意得,
解得,
答:甲魚苗價(jià)格為50元/kg,乙魚苗價(jià)格為40元/kg;
(2)根據(jù)題意得:,解得,
∵,
∴,
①當(dāng)時(shí),
W關(guān)于a的解析式為:;
②當(dāng)時(shí),W關(guān)于a的解析式為:
;
(3)①當(dāng)時(shí),,
∵,
∴W隨a的增大而增大,
∴當(dāng)時(shí),W的值最小,此時(shí)(元);
②當(dāng)時(shí),,
∵,
∴W隨a的增大而增大,
∴當(dāng)時(shí),W的值最小,此時(shí)(元),
∵,
∴當(dāng)購買甲魚苗40 kg,乙魚苗50 kg時(shí),所需總費(fèi)用最低,最低總費(fèi)用為3000元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市舉行知識(shí)大賽,A校、B校各派出5名選手組成代表隊(duì)參加決賽,兩校派出選手的決賽成績?nèi)鐖D所示.
根據(jù)圖示填寫下表:
平均數(shù)分 | 中位數(shù)分 | 眾數(shù)分 | |
A校 | ______ | 85 | ______ |
B校 | 85 | ______ | 100 |
結(jié)合兩校成績的平均數(shù)和中位數(shù),分析哪個(gè)學(xué)校的決賽成績較好;
計(jì)算兩校決賽成績的方差,并判斷哪個(gè)學(xué)校代表隊(duì)選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交x軸于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求點(diǎn)A,B的坐標(biāo),并根據(jù)該函數(shù)圖象寫出y≥0時(shí)x的取值范圍;
(2)把點(diǎn)B向上平移m個(gè)單位得點(diǎn)B1.若點(diǎn)B1向左平移n個(gè)單位,將與該二次函數(shù)圖象上的點(diǎn)B2重合;若點(diǎn)B1向左平移(n+6)個(gè)單位,將與該二次函數(shù)圖象上的點(diǎn)B3重合.已知m>0,n>0,求m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,下列結(jié)論:①;②的兩個(gè)根是,;③;④.其中正確的有
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BC=8cm,點(diǎn)D是線段BC上的一點(diǎn),分別以BD、CD為邊在BC的同側(cè)作等邊三角形ABD和等邊三角形CDE,AC、BE相交于點(diǎn)P,則點(diǎn)D從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C時(shí),點(diǎn)P的運(yùn)動(dòng)路徑長(含與點(diǎn)B、C重合)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車租貿(mào)公司共有汽車50輛,市場調(diào)查表明,當(dāng)租金為每輛每日200元時(shí)可全部租出,當(dāng)租金每提高10元,租出去的車就減少2輛.
(1)當(dāng)租金提高多少元時(shí),公司的每日收益可達(dá)到10120元?
(2)公司領(lǐng)導(dǎo)希望日收益達(dá)到10160元,你認(rèn)為能否實(shí)現(xiàn)?若能,求出此時(shí)的租金,若不能,請(qǐng)說明理由,
(3)汽車日常維護(hù)要定費(fèi)用,已知外租車輛每日維護(hù)費(fèi)為100元未租出的車輛維護(hù)費(fèi)為50元,當(dāng)租金為多少元時(shí),公司的利潤恰好為5500元?(利潤=收益﹣維護(hù)費(fèi))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一次函數(shù)y=kx﹣6(k≠0)的圖象與y軸交于點(diǎn)A,與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)B(4,b).
(1)b= ;k= ;
(2)點(diǎn)C是線段AB上一點(diǎn),過點(diǎn)C且平行于y軸的直線l交該反比例函數(shù)的圖象于點(diǎn)D,連接OC,OD,BD,若四邊形OCBD的面積S四邊形OCBD=,求點(diǎn)C的坐標(biāo);
(3)將第(2)小題中的△OCD沿射線AB方向平移一定的距離后,得到△O'C'D',若點(diǎn)O的對(duì)應(yīng)點(diǎn)O'恰好落在該反比例函數(shù)圖象上(如圖2),求此時(shí)點(diǎn)D的對(duì)應(yīng)點(diǎn)D'的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為,與坐標(biāo)軸交于、、三點(diǎn),且點(diǎn)的坐標(biāo)為.
(1)求二次函數(shù)的解析式;
(2)在二次函數(shù)圖象位于軸上方部分有兩個(gè)動(dòng)點(diǎn)、,且點(diǎn)在點(diǎn)的左側(cè),過、作軸的垂線交軸于點(diǎn)、兩點(diǎn),當(dāng)四邊形為矩形時(shí),求該矩形周長的最大值;
(3)在(2)中的矩形周長最大時(shí),連接,已知點(diǎn)是軸上一動(dòng)點(diǎn),過點(diǎn)作軸,交直線于點(diǎn),是否存在這樣的點(diǎn),使直線把分成面積為的兩部分;若存在,求出該點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
備用圖
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com