已知
x2+
6
y=
3
y2+
6
x=
3
(x≠y),則
y
x
+
x
y
的值是( 。
A、2+2
3
B、-2-2
3
C、2-
3
D、2+
3
考點(diǎn):根與系數(shù)的關(guān)系
專(zhuān)題:計(jì)算題
分析:根據(jù)題意可以把x、y看作一元二次方程t2+
6
t-
3
=0的兩個(gè)不等根,根據(jù)根與系數(shù)的關(guān)系得到x+y=-
6
,xy=-
3
,再變形
y
x
+
x
y
得到原式=
x2+y2
xy
=
(x+y)2-2xy
xy
,然后利用整體代入的思想計(jì)算即可.
解答:解:∵x2+
6
x-
3
=0,y2+
6
y-
3
=0,
∴x、y可看作一元二次方程t2+
6
t-
3
=0的兩個(gè)不等根,
∴x+y=-
6
,xy=-
3
,
∴原式=
x2+y2
xy
=
(x+y)2-2xy
xy
=
(-
6
)2-2×(-
3
)
-
3
=-2
3
-2.
故選B.
點(diǎn)評(píng):本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程兩個(gè)為x1,x2,則x1+x2=-
b
a
,x1•x2=
c
a
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)用一根長(zhǎng)80厘米的繩子圍成一個(gè)長(zhǎng)方形,且長(zhǎng)方形的長(zhǎng)比寬多10厘米,這個(gè)長(zhǎng)方形的面積是多少?用這根繩子圍成一個(gè)正方形,它的面積是多少?用這根繩子圍成一個(gè)圓,它的面積是多少?(π取3.14)
(2)再分別取長(zhǎng)度100厘米,120厘米的繩子重復(fù)上面(1)的三個(gè)問(wèn)題.
(3)比較得出的三個(gè)結(jié)果,你能獲得什么猜測(cè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一次函數(shù)y=-x-1的圖象經(jīng)過(guò)( 。
A、第二、三、四象限
B、第二、一、四象限
C、第三、二、一象限
D、第三、四、一象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知A、B是⊙O上兩點(diǎn),點(diǎn)P是⊙O上的動(dòng)點(diǎn)(P不與A、B重合),⊙O的半徑為1,AB=
2
,則∠APB的度數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

大于1的正整數(shù)m的三次冪可“分裂”成若干個(gè)連續(xù)奇數(shù)的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一個(gè)奇數(shù)是75,則m的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在矩形ABCD中,M是BC上一個(gè)動(dòng)點(diǎn),DE⊥AM,E為垂足,
(1)求證:△ADE∽△ABM;
(2)若3AB=2BC,并且AB,BC的長(zhǎng)是方程x2-(k-2)x+2k=0的兩個(gè)根.求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,已知正方形ABCD中,∠MAN=45°,猜想線段MN、BM與DN之間有怎樣的關(guān)系?并證明.
(2)如圖2,已知四邊形ABCD中,AB⊥BC于點(diǎn)B,AD⊥CD于點(diǎn)D,AB=AD,∠BAC=120°,∠MAN=60°,(1)中線段BM與DN之間的關(guān)系還成立嗎?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.
(3)張大爺有一塊五變形的土地,如圖3,已知AB=AE=6,BC=4,DE=3,∠BAE=2∠CAD,AB⊥BC于點(diǎn)B,AE⊥DE于點(diǎn)E,請(qǐng)你幫助張大爺計(jì)算這塊土地的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將拋物線y=(x-1)2+3向右平移2個(gè)單位后,得到的新拋物線解析式是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x、y的方程組
x-y=a-3
2x+y=5a
解滿(mǎn)足x>y>0,化簡(jiǎn)|a|+|3-a|=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案