【題目】如圖,等邊△ABC的邊長為2,過點B的直線且△ABC與△A′BC′關于直線l對稱,D為線段BC′上一動點,則AD+CD的最小值是____.
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分8分)
如圖,用兩段等長的鐵絲恰好可以分別圍成一個正五邊形和一個正六邊形,其中正五邊形的邊長為(),正六邊形的邊長為()cm(其中),求這兩段鐵絲的總長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等邊三角形中,點,,分別為各邊中點,為直線上一動點,為等邊三角形(點的位置改變時,也隨之整體移動).
(1)如圖1,當點在點左側時,請判斷與有怎樣的數(shù)量關系?請直接寫出結論,不必證明或說明理由;
(2)如圖2,當點在上時,其它條件不變,(1)的結論中與的數(shù)量關系是否仍然成立?若成立,請利用圖2證明;若不成立,請說明理由;
(3)若點在點右側時,請你在圖3中畫出相應的圖形,并判斷(1)的結論中與的數(shù)量關系是否仍然成立?若成立,請直接寫出結論,不必證明或說明理由.(提示:連接、、.可證、、、均為等邊三角形).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文具店去年8月底購進了一批文具1160件,預計在9月份進行試銷.購進價格為每件10元.若售價為12元/件,則可全部售出.若每漲價0.1元.銷售量就減少2件.
(1)求該文具店在9月份銷售量不低于1100件,則售價應不高于多少元?
(2)由于銷量好,10月份該文具進價比8月底的進價每件增加20%,該店主增加了進貨量,并加強了宣傳力度,結果10月份的銷售量比9月份在(1)的條件下的最低銷售量增加了m%,但售價比9月份在(1)的條件下的最高售價減少m%.結果10月份利潤達到3388元,求m的值(m>10).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:有兩條邊長的比值為的直角三角形叫做“魅力三角形”我們知道,命題“直角三角形30°角所對的直角邊等于斜邊的一半”是一個真命題,所以“含30°角的直角三角形”就是一個“魅力三角形”
(1)設“魅力三角形”較短直角邊為a,較長直角邊為b,請你直接寫出的值.
(2)如圖,在Rt△ABC中,∠B=90°,BC=6,D是AB的中點,點E在CD上,滿足AD=DE,連結AE,過點D作DF∥AE交BC于點F
①如果點E是CD的中點,求證:△BDF是“魅力三角形”
②如果△BDF是“魅力三角形”,且BF=BC,求線段AC的長
(二次根式運算提示:()2=n2()2=n2a,比如:(4)2=42()2=16×3=48)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD外側,作等邊三角形ADE,AC,BE相交于點F,則∠BFC為( )
A. 75°B. 60°C. 55°D. 45°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為 4 的等邊△ABC 中,點 D 從點A 開始在射線 AB 上運動,速度為 1 個單位/秒,點F 同時從 C 出發(fā),以相同的速度沿射線 BC 方向運動,過點D 作 DE⊥AC,連結 DF 交射線 AC 于點 G
(1)當 DF⊥AB 時,求 t 的值;
(2)當點 D 在線段 AB 上運動時,是否始終有 DG=GF?若成立,請說明理由。
(3)聰明的斯揚同學通過測量發(fā)現(xiàn),當點 D 在線段 AB 上時,EG 的長始終等于 AC 的一半,他想當點D 運動到圖 2 的情況時,EG 的長是否發(fā)生變化?若改變,說明理由;若不變,求出 EG 的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】幾何作圖時,我們往往依據(jù)以下三個步驟:
①畫草圖分析思路
②設計畫圖步驟
③回答結論并驗證
請你按照以上所述,完成下面的尺規(guī)作圖:已知三條線段h,m,c,求作△ABC,使其BC邊上的高AH=h,中線AD=m,AB=c.
(1)請先畫草圖(畫出一個即可),并敘述簡要的作圖思路(即實現(xiàn)的大致作圖步驟);步驟如下:
(2)完成尺規(guī)作圖(不要求寫作法,作出一個滿足條件的三角形即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com