如圖,已知點P是半徑為r的圓的圓心.
(1)當r=3時,請判斷直線l1與⊙P的位置關(guān)系,并寫出理由.
(2)若直線l2與⊙P相切,那么半徑r為多少?寫出具體過程.
考點:直線與圓的位置關(guān)系
專題:
分析:(1)連接PA,根據(jù)圖形得出得出PA⊥l1,根據(jù)勾股定理得:PA=
5
,得出d<r,即可得出答案;
(2)連接PC,根據(jù)圖形得出PC⊥l2,根據(jù)勾股定理求出PC 根據(jù)直線與圓的位置關(guān)系得出即可.
解答:解:(1)當r=3時,直線l1與⊙P的位置關(guān)系是相交,
理由是:如圖,連接PA,
則根據(jù)圖形得出PA⊥l1,
∵根據(jù)勾股定理得:PA=
22+12
=
5
<3,即d<r,
∴當r=3時,直線l1與⊙P的位置關(guān)系是相交;

(2)連接PC,
則根據(jù)圖形得出PC⊥l2,
∵根據(jù)勾股定理得:PC=
22+22
=2
2
,
∵直線l2與⊙P相切,
∴半徑r=d=PC=2
2

即半徑r是2
2
點評:本題考查了勾股定理,直線與圓的位置關(guān)系,注意:當r=d時,直線與圓相切,當r>d時,直線與圓相交,當r<d時,直線與圓相離.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

若函數(shù)y=3x2-(9+a)x+6+2a(x是自變量且x為整數(shù)),在x=6或x=7時取得最小值,則a的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,點P(a,b)滿足a•b<0,則點P在( 。
A、第二象限
B、第三象限
C、第一象限或第三象限
D、第二象限或第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,半徑為12的⊙O中,弦AB與弦CD垂直相交于點E,若AB=16
2
,CD=6
15
,則OE的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,是用同樣大小的正方形按一定規(guī)律擺放而成的一系列圖案,則第n個圖案中正方形的個數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某校租用三輛汽車組織學生去參加中考體育測試,其中小明和王老師都可以從這三輛車中任選一輛搭乘.則小明和王老師同乘一輛車的概率是( 。
A、
1
3
B、
1
9
C、
1
2
D、
1
6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下列正多邊形中能單獨鑲嵌平面的是
 
.(填寫序號)
①正三角形      ②正方形        ③正五邊形       ④正六邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

直線y=2x-3繞原點順時針旋轉(zhuǎn)90°所得的直線的解析式為:
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是⊙P的直徑,弦CD∥AB,過點B的切線交AD的延長線于E,連接AC并延長至F,使CF=AC,連接EF.試判斷AF與EF的位置關(guān)系.

查看答案和解析>>

同步練習冊答案