如圖所示,拋物線m:y=ax2+b(a<0,b>0)與x軸于點A、B(點A在點B的左側),與y軸交于點C.將拋物線m繞點B旋轉(zhuǎn)180°,得到新的拋物線n,它的頂點為C1,與x軸的另一個交點為A1.

1.當a=-1 , b=1時,求拋物線n的解析式;

2.四邊形AC1A1C是什么特殊四邊形,請寫出結果并說明理由;

3.若四邊形AC1A1C為矩形,請求出a和b應滿足的關系式.

 

 

 

 

1.當時,拋物線的解析式為:.

,得:.         ∴C(0,1).

,得:.        ∴A(-1,0),B(1,0)

    ∵C與C1關于點B中心對稱, ∴C1(2, -1).

∴拋物線的解析式為: 

2.四邊形AC1A1C是平行四邊形.              

 理由:∵C與C1、A與A1都關于點B中心對稱,

,     ∴四邊形AC1A1C是平行四邊形.

3.令,得:.     ∴C(0,).

,得:,   ∴,

     ∴,  ∴.

要使平行四邊形AC1A1C是矩形,必須滿足,

,    ∴

        ∴.         ∴應滿足關系式.

解析:

1.根據(jù)a=-1,b=1得出拋物線m的解析式,再利用C與C1關于點B中心對稱,得出二次函數(shù)的頂點坐標,即可得出答案;

2.利用兩組對邊分別相等的四邊形是平行四邊形即可證明;

3.利用矩形性質(zhì)得出要使平行四邊形AC1A1C是矩形,必須滿足AB=BC,即可求出.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,拋物線y=ax2+bx+c與兩坐標軸的交點分別是A、B、E,且△ABE是等腰直角三角形,AE=BE,則下列關系式中不能成立的是(  )
A、b=0B、S△ABE=c2C、ac=-1D、a+c=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•河源二模)已知:如圖所示,拋物線y=-x2+bx+c與x軸的兩個交點分別為A(1,0),B(3,0).
(1)求拋物線的解析式;
(2)設點P在該拋物線上滑動,且滿足條件S△PAB=1的點P有幾個?并求出所有點P的坐標;
(3)設拋物線交y軸于點C,問該拋物線對稱軸上是否存在點M,使得△MAC的周長最小?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•槐蔭區(qū)一模)如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點,A、B兩點的坐標分別為(-1,0)、(0,-3).
(1)求拋物線的函數(shù)解析式;
(2)點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標;
(3)在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•陜西)如圖所示,拋物線對應的函數(shù)解析表達式只可能是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•陜西)如圖所示的拋物線是把y=-x2經(jīng)過平移而得到的.這時拋物線過原點O和x軸正向上一點A,頂點為P;
①當∠OPA=90°時,求拋物線的頂點P的坐標及解析表達式;
②求如圖所示的拋物線對應的二次函數(shù)在-
1
2
≤x≤
1
2
時的最大值和最小值.

查看答案和解析>>

同步練習冊答案