【題目】計算:20170+( 1+6cos30°﹣|2﹣ |.

【答案】解:20170+( 1+6cos30°﹣|2﹣ | =1+2+6× ﹣2+
=3+3 ﹣2+
=1+4
【解析】首先計算乘方和乘法,然后從左向右依次計算,求出算式的值是多少即可.
【考點精析】利用零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質(zhì)對題目進行判斷即可得到答案,需要熟知零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在一次初中生田徑運動會上,根據(jù)參加男子跳高初賽的運動員的成績(單位:m),繪制出如下的統(tǒng)計圖①和圖②,請根據(jù)相關信息,解答下列問題:
(1)①中a的值為;
(2)統(tǒng)計的這組初賽成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù)(結果保留小數(shù)點后兩位);
(3)據(jù)這組初賽成績,由高到低確定7人進入復賽,請直接寫出初賽成績?yōu)?.60m的運動員能否進入復賽.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,平面直角坐標系中,直線y=kx+bx軸交于點A(6,0),與y軸交于點B,與直線y=2x交于點C(a,4).

(1)求點C的坐標及直線AB的表達式;

(2)如圖2,在(1)的條件下,過點E作直線lx軸于點E,交直線y=2x于點F,交直線y=kx+b于點G,若點E的坐標是(4,0).

①求CGF的面積;

②直線l上是否存在點P,使OP+BP的值最?若存在,直接寫出點P的坐標;若不存在,說明理由;

(3)若(2)中的點Ex軸上的一個動點,點E的橫坐標為m(m>0),當點Ex軸上運動時,探究下列問題:

m取何值時,直線l上存在點Q,使得以A,C,Q為頂點的三角形與AOC全等?請直接寫出相應的m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正n邊形(n為整數(shù),且n≥4)繞點A順時針旋轉(zhuǎn)60°后,發(fā)現(xiàn)旋轉(zhuǎn)前后兩圖形有另一交點O,連接AO,我們稱AO為“疊弦”;再將“疊弦”AO所在的直線繞點A逆時針旋轉(zhuǎn)60°后,交旋轉(zhuǎn)前的圖形于點P,連接PO,我們稱∠OAB為正n邊形的“疊弦角”,△AOP為“疊弦三角形”.以下說法,正確的是 . (填番號)
①在圖1中,△AOB≌△AOD';
②在圖2中,正五邊形的“疊弦角”的度數(shù)為360°;
③“疊弦三角形”不一定都是等邊三角形; ④正n邊形的“疊弦角”的度數(shù)為60°﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】不等式組 的解集在數(shù)軸上可表示為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的邊AB是⊙O的直徑,點C在⊙O上,已知AC=6cm,BC=8cm,點P、Q分別在邊AB、BC上,且點P不與點A、B重合,BQ=kAP(k>0),聯(lián)接PC、PQ.
(1)求⊙O的半徑長;
(2)當k=2時,設AP=x,△CPQ的面積為y,求y關于x的函數(shù)關系式,并寫出定義域;
(3)如果△CPQ與△ABC相似,且∠ACB=∠CPQ,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表記錄的是今年長江某一周內(nèi)的水位變化情況,這一周的上周末的水位已達到警戒水位米(正號表示水位比前一天上升,負號表示水位比前一天下降).

星期

水位

變化(米)

+0.2

-0.4

+0.3

(1)本周哪一天長江的水位最高?位于警戒水位之上還是之下?

(2)與上周周末相比,本周周末長江的水位是上升了還是下降了?并通過計算說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(探究)如圖①,∠AFH和∠CHF的平分線交于點OEG經(jīng)過點O且平行于FH,分別與AB、CD交于點EG

(1)若∠AFH60°,∠CHF50°,則∠EOF_____度,∠FOH_____度.

(2)若∠AFH+CHF100°,求∠FOH的度數(shù).

(拓展)如圖②,∠AFH和∠CHI的平分線交于點O,EG經(jīng)過點O且平行于FH,分別與AB、CD交于點E、G.若∠AFH+CHFα,直接寫出∠FOH的度數(shù).(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點C落在處,AD于點E

(1)試判斷△BDE的形狀,并說明理由;

(2)若,,求△BDE的面積.

查看答案和解析>>

同步練習冊答案