【題目】如圖1,平面直角坐標系中,直線y=kx+bx軸交于點A(6,0),與y軸交于點B,與直線y=2x交于點C(a,4).

(1)求點C的坐標及直線AB的表達式;

(2)如圖2,在(1)的條件下,過點E作直線lx軸于點E,交直線y=2x于點F,交直線y=kx+b于點G,若點E的坐標是(4,0).

①求CGF的面積;

②直線l上是否存在點P,使OP+BP的值最?若存在,直接寫出點P的坐標;若不存在,說明理由;

(3)若(2)中的點Ex軸上的一個動點,點E的橫坐標為m(m>0),當點Ex軸上運動時,探究下列問題:

m取何值時,直線l上存在點Q,使得以A,C,Q為頂點的三角形與AOC全等?請直接寫出相應的m的值.

【答案】(1)y=﹣x+6;(2)①6;②P(4,3);(3)A題:m的值為2或6或8.B題:m的值為3或6或

【解析】

(1)將C(2,4)和A(6,0)代入y=kx+b,即可得到直線AB的解析式;

(2)①設(shè)點F(4,y1),G(4,y2),分別代入y=2xy=-x+6,可得FE=8,GE=2,F(xiàn)G=6,過點CCHFGH,依據(jù)SFCG=FG×CH,進行計算即可;②設(shè)點O關(guān)于直線l的對稱點為D(8,0),設(shè)直線BD的解析式為y=mx+n,將B(0,6),D(8,0)代入y=mx+n,可得直線BD的解析式為y=-x+6,令x=4,則y=3,即可得出P(4,3);

(3)選A題時,需要分數(shù)軸情況進行討論,畫出圖形,依據(jù)全等三角形的對應頂點的位置,即可得到m的值;選B題時,依據(jù)BFG是等腰三角形分四種情況進行討論,進而得出m的值.

(1)將點C(a,4)代入y=2x,可得a=2,

C(2,4),

C(2,4)和A(6,0)代入y=kx+b,可得

,解得,

∴直線AB的解析式為y=﹣x+6;

(2)①如圖1,lx軸,點E,F(xiàn),G都在直線l上,且點E的坐標為(4,0),

∴點F,G的橫坐標均為4,

設(shè)點F(4,y1),G(4,y2),分別代入y=2xy=﹣x+6,可得

y1=8,y2=2,

F(4,8),G(4,2),

FE=8,GE=2,F(xiàn)G=6,

如圖2,過點CCHFGH,

C(2,4),

CH=4﹣2=2,

SFCG=FG×CH=×6×2=6;

②存在點P(4,3),使得BP+OP的值最。

理由:設(shè)點O關(guān)于直線l的對稱點為D(8,0),

設(shè)直線BD的解析式為y=mx+n,

B(0,6),D(8,0)代入y=mx+n,可得

,解得,

∴直線BD的解析式為y=﹣x+6,

P在直線l:x=4上,令x=4,則y=3,

P(4,3);

(3)A題:m的值為268.

理由:分三種情況討論:

①當OAC≌△QCA,點Q在第四象限時,∠ECA=EAC,

AE=CE=4,OE=6﹣4=2,

m=2;

②當ACO≌△ACQ,Q在第一象限時,OE=AO=6,

m=6;

③當ACO≌△CAQ,點Q在第四象限時,四邊形AOCQ是平行四邊形,CQ=AO=6,AE=2,

OE=8,

m=8;

B題:m的值為36

理由:分四種情況討論:

①如圖,當BG=GF時, m=﹣m+6﹣2m,

解得m=;

②如圖,當BF=GF時,m=2m﹣(﹣m+6),

解得m=3;

③如圖,當GB=GF時,m=2m﹣(﹣m+6),

解得m=;

④如圖,當BG=BF時,FG=BG,即2m﹣(﹣m+6)=×m,

解得m=6.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】尺規(guī)作圖特有的魅力曾使無數(shù)人沉湎其中,連當年叱咤風云的拿破侖也不例外,我們可以只用圓規(guī)將圓等分.例如可將圓6等分,如圖只需在⊙O上任取點A,從點A開始,以⊙O的半徑為半徑,在⊙O上依次截取點B,C,D,E,F(xiàn).從而點A,B,C,D,E,F(xiàn)把⊙O六等分.下列可以只用圓規(guī)等分的是( ) ①兩等分 ②三等分 ③四等分 ④五等分.

A.②
B.①②
C.①②③
D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖E,HG,N在同一直線上,EFG≌△NMH,F和∠M是對應角.在EFG,FG是最長邊.在NMH,MH是最長邊.已知EF=2.1 cm,EH=1.1 cm,HN=3.3 cm.

(1)寫出其他對應邊及對應角;

(2)求線段MN及線段HG的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC , 分別以點B和點C為圓心,大于BC一半的長為半徑作圓弧,兩弧相交于點M和點N , 作直線MNAB于點D;連結(jié)CD.若AB=7,AC=5,則△ACD的周長為( )

A.2
B.12
C.17
D.19

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,GF分別為AD、BC的中點,將紙片折疊,使D點落在GF上,得到△HAE , 再過H點折疊紙片,使B點落在直線AB上,折痕為PQ.連接AF、EF , 已知HEHF.下列結(jié)論:①△MEH為等邊三角形;②AEEF;③△PHE∽△HAE;④ ,

其中正確的結(jié)論是
A.①②③
B.①②④
C.①③④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算題
(1)計算:|1﹣ |﹣3tan30°+(π﹣2017)0﹣(﹣ 1
(2)解不等式組 并在數(shù)軸上表示它的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,△OAB的頂點Ax軸的正半軸上,BC=2AC , 點B、C在反比例函數(shù)yx>0)的圖象上,則△OAB的面積為.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:20170+( 1+6cos30°﹣|2﹣ |.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下面算式,解答問題:

……

(1)請求出1 3 5 7 9 11的結(jié)果為 ;

請求出1 3 5 7 9 29 的結(jié)果為 ;

(2)若n 表示正整數(shù),請用含 n 的代數(shù)式表示1 3 5 7 9 (2n 1) (2n 1) 的值為

(3)請用上述規(guī)律計算: 41 43 45 77 79 的值(要求寫出詳細解答過程).

查看答案和解析>>

同步練習冊答案