【題目】解不等式 x﹣1>2x,并把解集在數(shù)軸上表示出來.

【答案】解:移項得: x﹣2x>1, 合并同類項得:﹣ x>1,
不等式的兩邊都乘以﹣2得:x<﹣2.
在數(shù)軸上表示不等式的解集為:
【解析】移項后合并同類項得出﹣ x>1,不等式的兩邊都乘以﹣2即可得出答案.
【考點精析】本題主要考查了不等式的性質和不等式的解集在數(shù)軸上的表示的相關知識點,需要掌握1:不等式的兩邊同時加上(或減去)同一個數(shù)(或式子),不等號的方向不變 .2:不等式的兩邊同時乘以(或除以)同一個 正數(shù) ,不等號的方向 不變 .3:不等式的兩邊同時乘以(或除以)同一個 負數(shù) ,的方向 改變;不等式的解集可以在數(shù)軸上表示,分三步進行:①畫數(shù)軸②定界點③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實心圓點,不等于用空心圓圈才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,△ABC中,∠ACB=90°,AB=8cm,D是AB的中點.現(xiàn)將△BCD沿BA方向平移1cm,得到△EFG,F(xiàn)G交AC于H,則GH的長等于cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】線段MN在直角坐標系中的位置如圖所示,若線段M′N′與MN關于y軸對稱,則點M的對應點M′的坐標為( )

A.(4,2)
B.(﹣4,2)
C.(﹣4,﹣2)
D.(4,﹣2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,點D在BC的延長線上,且BD=AB,過點B作BE⊥AC,與BD的垂線DE交于點E.
(1)求證:△ABC≌△BDE;
(2)△BDE可由△ABC旋轉得到,利用尺規(guī)作出旋轉中心O(保留作圖痕跡,不寫作法).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下框中是小明對一道題目的解答以及老師的批改.

題目:某村計劃建造如圖所示的矩形蔬菜溫室,要求長與寬的比為2:1,在溫室內,沿前側內墻保留3m的空地,其他三側內墻各保留1m的通道,當溫室的長與寬各為多少時,矩形蔬菜種植區(qū)域的面積是288m2?
解:,
根據(jù)題意,得x2x=288.
解這個方程,得x1=﹣12(不合題意,舍去),x2=12
所以溫室的長為2×12+3+1=28(m),寬為12+1+1=14(m)
答:當溫室的長為28m,寬為14m時,矩形蔬菜種植區(qū)域的面積是288m2

我的結果也正確!
(1)小明發(fā)現(xiàn)他解答的結果是正確的,但是老師卻在他的解答中畫了一條橫線,并打了一個?.結果為何正確呢?
(2)請指出小明解答中存在的問題,并補充缺少的過程: 變化一下會怎樣…
(3)如圖,矩形A′B′C′D′在矩形ABCD的內部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,設AB與A′B′、BC與B′C′、CD與C′D′、DA與D′A′之間的距離分別為a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d應滿足什么條件?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點,與y軸交于點C,點O為坐標原點,點D為拋物線的頂點,點E在拋物線上,點F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3,
(1)求拋物線所對應的函數(shù)解析式;
(2)求△ABD的面積;
(3)將△AOC繞點C逆時針旋轉90°,點A對應點為點G,問點G是否在該拋物線上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程:

(1)4-m=-m; (2)56-8x=11+x;

(3) x+1=5+x; (4)-5x+6+7x=1+2x-3+8x.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面上有兩條直線AB、CD相交于點O,且∠BOD=150°(如圖),現(xiàn)按如下要求規(guī)定此平面上點的“距離坐標”: ①點O的“距離坐標”為(0,0);
②在直線CD上,且到直線AB的距離為p(p>0)的點的“距離坐標”為(p,0);在直線AB上,且到直線CD的距離為q(q>0)的點的“距離坐標”為(0,q);
③到直線AB、CD的距離分別為p,q(p>0,q>0)的點的“距離坐標”為(p,q).
設M為此平面上的點,其“距離坐標”為(m,n),根據(jù)上述對點的“距離坐標”的規(guī)定,解決下列問題:
(1)畫出圖形(保留畫圖痕跡): ①滿足m=1,且n=0的點M的集合;
②滿足m=n的點M的集合;
(2)若點M在過點O且與直線CD垂直的直線l上,求m與n所滿足的關系式.(說明:圖中OI長為一個單位長)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,F(xiàn)為弦AC的中點,連接OF并延長交弧AC于點D,過點D作⊙O的切線,交BA的延長線于點E.
(1)求證:AC∥DE;
(2)連接CD,若OA=AE=2時,求出四邊形ACDE的面積.

查看答案和解析>>

同步練習冊答案