【題目】如圖,在Rt△ABC中,∠ABC=90°,點(diǎn)D在BC的延長(zhǎng)線上,且BD=AB,過(guò)點(diǎn)B作BE⊥AC,與BD的垂線DE交于點(diǎn)E.
(1)求證:△ABC≌△BDE;
(2)△BDE可由△ABC旋轉(zhuǎn)得到,利用尺規(guī)作出旋轉(zhuǎn)中心O(保留作圖痕跡,不寫作法).
【答案】
(1)證明:在Rt△ABC中,
∵∠ABC=90°,
∴∠ABE+∠DBE=90°,
∵BE⊥AC,
∴∠ABE+∠A=90°,
∴∠A=∠DBE,
∵DE是BD的垂線,
∴∠D=90°,
在△ABC和△BDE中,
∵ ,
∴△ABC≌△BDE(ASA)
(2)作法一:如圖①,點(diǎn)O就是所求的旋轉(zhuǎn)中心.
作法二:如圖②,點(diǎn)O就是所求的旋轉(zhuǎn)中心.
【解析】(1)利用已知得出∠A=∠DBE,進(jìn)而利用ASA得出△ABC≌△BDE即可;(2)利用垂直平分線的性質(zhì)可以作出,或者利用四邊形性質(zhì)得出旋轉(zhuǎn)中心即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+b(b>4)與x軸、y軸分別相交于點(diǎn)A、B,與反比例函數(shù) 的圖象相交于點(diǎn)C、D(點(diǎn)C在點(diǎn)D的左側(cè)),⊙O是以CD長(zhǎng)為半徑的圓.CE∥x軸,DE∥y軸,CE、DE相交于點(diǎn)E.
(1)△CDE是三角形;點(diǎn)C的坐標(biāo)為 , 點(diǎn)D的坐標(biāo)為(用含有b的代數(shù)式表示);
(2)b為何值時(shí),點(diǎn)E在⊙O上?
(3)隨著b取值逐漸增大,直線y=x+b與⊙O有哪些位置關(guān)系?求出相應(yīng)b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,已知AD∥BC,AB=CD,延長(zhǎng)線段CB到E,使BE=AD,連接AE、AC.
(1)求證:△ABE≌△CDA;
(2)若∠DAC=40°,求∠EAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑為17cm,弦AB∥CD,AB=30cm,CD=16cm,圓心O位于AB,CD的上方,求AB和CD的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,經(jīng)過(guò)點(diǎn)A(0,﹣4)的拋物線y= x2+bx+c與x軸相交于B(﹣2,0),C兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求拋物線的解析式;
(2)將拋物線y= x2+bx+c向上平移 個(gè)單位長(zhǎng)度,再向左平移m(m>0)個(gè)單位長(zhǎng)度得到新拋物線,若新拋物線的頂點(diǎn)P在△ABC內(nèi),求m的取值范圍;
(3)設(shè)點(diǎn)M在y軸上,∠OMB+∠OAB=∠ACB,求AM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某月的日歷表,在此日歷表上可以用一個(gè)矩形圈出3×3個(gè)位置的9個(gè)數(shù)(如6,7,8,13,14,15,20,21,22).若圈出的9個(gè)數(shù)中,最大數(shù)與最小數(shù)的和為42,則這9個(gè)數(shù)的和為( 。
A. 69 B. 84 C. 189 D. 207
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A(0,4),C(2,0).將矩形OABC繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)135°,得到矩形EFGH(點(diǎn)E與O重合).
(1)若GH交y軸于點(diǎn)M,則∠FOM=°,OM=;
(2)將矩形EFGH沿y軸向上平移t個(gè)單位. ①直線GH與x軸交于點(diǎn)D,若AD∥BO,求t的值;
②若矩形EFGH與矩形OABC重疊部分的面積為S個(gè)平方單位,試求當(dāng)0<t≤4 ﹣2時(shí),S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=5,PB=12,PC=13,若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△P′AB,求點(diǎn)P與點(diǎn)P′之間的距離及∠APB的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com