【題目】如圖,已知拋物線,過點(diǎn)D0,)的直線與拋物線交于點(diǎn)M、N,與軸交于點(diǎn)E,且點(diǎn)M、N關(guān)于點(diǎn)E對(duì)稱,求直線MN的解析式.

【答案】y=x.

【解析】

設(shè)直線MN的解析式為y=kxk0).根據(jù)一元二次方程x2-4x+3=0的根求得點(diǎn)E的坐標(biāo).把點(diǎn)E的坐標(biāo)代入求得k的值即可.

過點(diǎn)D(0,)的直線與拋物線交于M(xM,yM)、N(xN,yN)兩點(diǎn),與x軸交于點(diǎn)E,使得M、N兩點(diǎn)關(guān)于點(diǎn)E對(duì)稱。

設(shè)直線MN的解析式為:y=kx,

則有:YM+YN=0,

,

x24x+3=kx,

移項(xiàng)后合并同類項(xiàng)得x2(k+4)x+=0,

xM+xN=4+k.

yM+yN=kxM+kxN=k(xM+xN)5=0

yM+yN=k(xM+xN)=5,

k(k+4)5=0

k=1k=5.

當(dāng)k=5時(shí),方程x2(k+4)x+=0的判別式△<0,直線MN與拋物線無(wú)交點(diǎn),

k=1,

∴直線MN的解析式為y=x.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知第一象限內(nèi)的點(diǎn)A在反比例函數(shù)y=的圖象上,第二象限內(nèi)的點(diǎn)B在反比例函數(shù)y=的圖象上,且OA⊥OB,cosA=,則k的值為( )

A. -3  B. -6  C. -4 D. -

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD是⊙O的內(nèi)接正方形,延長(zhǎng)BAE,使AE=AB,連接ED


1)求證:直線ED是⊙O的切線;
2)連接EOAD于點(diǎn)F,求證:EF=2FO

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為的正方形的頂點(diǎn)在一個(gè)半徑為的圓上,頂點(diǎn)、在圓內(nèi),將正方形沿圓的內(nèi)壁逆時(shí)針方向作無(wú)滑動(dòng)的滾動(dòng).當(dāng)點(diǎn)第一次落在圓上時(shí),點(diǎn)運(yùn)動(dòng)的路徑長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,一次函數(shù)y=mx+nm≠0)和二次函數(shù)y=ax2+bx+ca≠0)的圖象交于A﹣30)和B兩點(diǎn),拋物線與x軸交于AC兩點(diǎn),且C的橫坐標(biāo)在01之間(不含端點(diǎn)),下列結(jié)論正確的是( )

A. abc0 B. 3a﹣b0 C. 2a﹣b+m0 D. a﹣b2m﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C、D在線段AB上,PCD是等邊三角形,且ACP∽△PDB

(1)求APB的大小.

(2)說(shuō)明線段AC、CD、BD之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某建筑物,從10m高的窗口A,用水管向外噴水,噴出的水呈拋物線狀(拋物線所在的平面與墻面垂直),如圖所示,如果拋物線的最高點(diǎn)M離墻1m,離地面m,則水流落地點(diǎn)B離墻的距離OB是(

A.2mB.3mC.4mD.5m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖A是⊙O上一點(diǎn),半徑OC的延長(zhǎng)線與過點(diǎn)A的直線交于B點(diǎn),OCBC,∠B30°

1)求證:AB是⊙O的切線;

2)若∠ACD45°,OC2,求弦CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)AD,E在同一直線上,連接BE

①∠AEB的度數(shù)為__________;

②線段AD,BE之間的數(shù)量關(guān)系為__________;

2)如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=DCE=90°,點(diǎn)A,D,E在同一直線上,CM為△DCEDE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)及線段CM,AEBE之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)如圖3,在正方形ABCD中,CD=,若點(diǎn)P滿足PD=1,且∠BPD=90°,請(qǐng)直接寫出點(diǎn)ABP的距離為________________________________。

查看答案和解析>>

同步練習(xí)冊(cè)答案