如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(Ⅰ)直接寫(xiě)出點(diǎn)E、F的坐標(biāo);
(Ⅱ)若M為x軸上的動(dòng)點(diǎn),N為y軸上的動(dòng)點(diǎn),當(dāng)四邊形MNFE的周長(zhǎng)最小時(shí),求出點(diǎn)M、N的坐標(biāo),并求出周長(zhǎng)的最小值.

【答案】分析:(Ⅰ)△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處,可以知道四邊形ADFB是正方形,因而B(niǎo)F=AB=OC=2,則CF=3-2=1,因而E、F的坐標(biāo)就可以求出.
(Ⅱ)作點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)E′,作點(diǎn)F關(guān)于y軸的對(duì)稱點(diǎn)F′,連接E′F′,分別與x軸、y軸交于點(diǎn)M,N,則點(diǎn)M,N就是所求點(diǎn).
求出線段E′F′的長(zhǎng)度,就是四邊形MNFE的周長(zhǎng)的最小值.
解答:(本小題10分)
解:(Ⅰ)E(3,1);F(1,2).(2分)
(Ⅱ)如圖,作點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)E′,
作點(diǎn)F關(guān)于y軸的對(duì)稱點(diǎn)F′,連接E′F′,分別
與x軸、y軸交于點(diǎn)M、N,連接FN、NM、ME,
此時(shí)四邊形MNFE的周長(zhǎng)最。4分)
∴E′(3,-1),F(xiàn)′(-1,2),
設(shè)直線E′F′的解析式為y=kx+b,

解這個(gè)方程組,得
∴直線E′F′的解析式為
當(dāng)y=0時(shí),,
∴M點(diǎn)的坐標(biāo)為(,0).
當(dāng)x=0時(shí),,
∴N點(diǎn)的坐標(biāo)為(0,).(7分)
∵E與E′關(guān)于x軸對(duì)稱,F(xiàn)與F′關(guān)于y軸對(duì)稱,
∴NF=NF′,ME=ME′.F′B=4,E′B=3.
在Rt△BE′F′中,
∴FN+NM+ME=F′N+NM+ME′=F′E′=5.
在Rt△BEF中,
,
即四邊形MNFE的周長(zhǎng)最小值是5+.(10分)
點(diǎn)評(píng):本題主要考查了待定系數(shù)法求函數(shù)解析式,求線段的和最小的問(wèn)題基本的解決思路是根據(jù)對(duì)稱轉(zhuǎn)化為兩點(diǎn)之間的距離的問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4cm,OC=3cm,D為OA上一動(dòng)點(diǎn),點(diǎn)D以1cm/s的速度從O點(diǎn)出發(fā)向精英家教網(wǎng)A點(diǎn)運(yùn)動(dòng),E為AB上一動(dòng)點(diǎn),點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā)向點(diǎn)B運(yùn)動(dòng).
(1)試寫(xiě)出多邊形ODEBC的面積S(cm2)與運(yùn)動(dòng)時(shí)間t(s)之間的函數(shù)關(guān)系式;
(2)在(1)的條件下,當(dāng)多邊形ODEBC的面積最小時(shí),在坐標(biāo)軸上是否存在點(diǎn)P,使得△PDE為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在某一時(shí)刻將△BED沿著B(niǎo)D翻折,使得點(diǎn)E恰好落在BC邊的點(diǎn)F處.求出此時(shí)時(shí)間t的值.若此時(shí)在x軸上存在一點(diǎn)M,在y軸上存在一點(diǎn)N,使得四邊形MNFE的周長(zhǎng)最小,試求出此時(shí)點(diǎn)M,點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系、已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處,若在y軸上存在點(diǎn)P,且滿足FE=FP,則P點(diǎn)坐標(biāo)為
(0,4),(0,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OC所在的直線為x軸,OA所在的直線為y軸,建立平面精英家教網(wǎng)直角坐標(biāo)系.已知OA=6,OC=4,在OA上取一點(diǎn)D,將△BDA沿BD翻折,點(diǎn)A恰好落在BC邊上的點(diǎn)E處.
(1)試判斷四邊形ABED的形狀,并說(shuō)明理由;
(2)若點(diǎn)F是AB的中點(diǎn),設(shè)頂點(diǎn)為E的拋物線的右側(cè)部分交x軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)精英家教網(wǎng)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(1)直接寫(xiě)出點(diǎn)E、F的坐標(biāo);
(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(Ⅰ)直接寫(xiě)出點(diǎn)E、F的坐標(biāo);
(Ⅱ)若M為x軸上的動(dòng)點(diǎn),N為y軸上的動(dòng)點(diǎn),當(dāng)四邊形MNFE的周長(zhǎng)最小時(shí),求出點(diǎn)M、N的坐標(biāo),并求出周長(zhǎng)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案