已知:r如圖,在梯形ABCD中,AD∥BC,∠BCD=90°.對角線AC、BD相交于點E。且AC⊥BD。(1)求證:CD²=BC·AD;(2)點F是邊BC上一點,連接AF,與BD相交于點G,如果∠BAF=∠DBF,求證:。
見解答過程.
解析試題分析:(1)首先根據(jù)已知得出∠ACD=∠CBD,以及∠ADC=∠BCD=90°,進而求出△ACD∽△DBC,即可得出答案;
(2)首先證明△ABG∽△DBA,進而得出AG:AD=AB:BD,再利用△ABG∽△DBA,得出BG:AB="AB:BD" ,則AB2=BG•BD,進而得出答案.
試題解析:證明:(1)∵AD∥BC,∠BCD=90°,
∴∠ADC=∠BCD=90°,
又∵AC⊥BD,∴∠ACD+∠ACB=∠CBD+∠ACB=90°,
∴∠ACD=∠CBD,
∴△ACD∽△DBC,
∴AD CD ="CD" BC ,
即CD2=BC×AD;
(2)∵AD∥BC,∴∠ADB=∠DBF,
∵∠BAF=∠DBF,∴∠ADB=∠BAF,
∵∠ABG=∠DBA,∴△ABG∽△DBA,
∴S△ABG:S△DBA =()2=AG2:AD2,
而S△ABG:S△DBA="BG:BD" ,∴AG2:AD2 ="BG:BD" .
考點:相似三角形的判定與性質(zhì).
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:如圖ΔABC中,D、E、F分別是AB、AC、BC的中點.
(1)若AB=10cm,AC=6cm,則四邊形ADFE的周長為______cm
(2)若ΔABC周長為6cm,面積為12cm2,則ΔDEF的周長是 _____,面積是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在Rt△ABC中,∠C=90°,D為AB邊上一點,點M、N分別在BC、AC邊上,
且DM⊥DN,作MF⊥AB于點F,NE⊥AB于點E。
(1)特殊驗證:如圖1,若AC=BC,且D為AB中點,求證:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC。
①如圖2,若D為AB中點,(1)中的兩個結(jié)論有一個仍成立,請指出并加以證明;
②如圖3,若BD=kAD,條件中“點M在BC邊上”改為“點M在線段CB的延長線上”,其它條件不變,請?zhí)骄緼E與DF的數(shù)量關(guān)系并加以證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在□ABCD中,AB=4,AD=6,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,BG=.
(1)求AE的長; (2)求ΔCEF的周長和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:△ABC在坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3),B(3,4),C(2,2),(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度)
(1)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標(biāo);
(2)以點B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2∶1,并直接寫出C2點的坐標(biāo)及△A2BC2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動點M,N從點C同時出發(fā),均以每秒1cm的速度分別沿CA、CB向終點A,B移動,同時動點P從點B出發(fā),以每秒2cm的速度沿BA向終點A移動,連接PM,PN,設(shè)移動時間為t(單位:秒,0<t<2.5).
(1)當(dāng)t為何值時,以A,P,M為頂點的三角形與△ABC相似?
(2)是否存在某一時刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,A(-1,1),B(-2,-1).(1)以原點O為位似中心,把線段AB放大到原來的2倍,請在圖中畫出放大后的線段CD;(2)在(1)的條件下,寫出點A的對應(yīng)點C的坐標(biāo)為 ,點B的對應(yīng)點D的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(1)如圖1,在等邊△ABC中,點M是邊BC上的任意一點(不含端點B、C),聯(lián)結(jié)AM,以AM為邊作等邊△AMN,聯(lián)結(jié)CN.求證:∠ABC=∠ACN.
【類比探究】
(2)如圖2,在等邊△ABC中,點M是邊BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請說明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點M是邊BC上的任意一點(不含端點B、C),聯(lián)結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.聯(lián)結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com