【題目】七巧板是我國祖先的一項(xiàng)卓越創(chuàng)造,如圖正方形ABCD可以制作一副七巧板,現(xiàn)將這副七巧板拼成如圖2風(fēng)車造型(內(nèi)部有一塊空心),連結(jié)最外圍的風(fēng)車頂點(diǎn)MN、P、Q得到一個(gè)四邊形MNPQ,則正方形ABCD與四邊形MNPQ的面積之比為(  )

A.58B.35C.813D.2549

【答案】C

【解析】

本題主要是勾股定理的應(yīng)用,關(guān)鍵是找出兩個(gè)正方形的邊長,與他們邊長有關(guān)的是圖1的對(duì)角線AC,圖2中的邊可以轉(zhuǎn)化到MEEQ兩條邊上,統(tǒng)一用相同的字母設(shè)出來,然后代入勾股定理公式計(jì)算即可.

解:設(shè)ACa+a+a+a4a,則ABBCAC×sin45°2a,

所以正方形ABCD的面積是(2 a28a2;

2ME3aEQ2a,

由勾股定理得:MQa,

所以正方形MNPQ的面積為( a213a2

所以圖中正方形ABCD,MNPQ的面積比為 =,

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB是⊙O的直徑,C是⊙O上的一點(diǎn)(不與點(diǎn)A,B重合),過點(diǎn)CAB的垂線交⊙O于點(diǎn)D,垂足為E點(diǎn).

1)如圖1,當(dāng)AE=4,BE=2時(shí),求CD的長度;

2)如圖2,連接ACBD,點(diǎn)MBD的中點(diǎn).求證:MEAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=5,BC=4,D為邊AB上一動(dòng)點(diǎn)(B點(diǎn)除外),以CD為一邊作正方形CDEF,連接BE,則△BDE面積的最大值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,要在底邊BC=160cm,高AD=120cm的△ABC鐵皮余料上,截取一個(gè)矩形EFGH,使點(diǎn)HAB上,點(diǎn)GAC上,點(diǎn)E,FBC上,ADHG于點(diǎn)M.

(1)設(shè)矩形EFGH的長HG=ycm,寬HE=xcm.求y與x的函數(shù)關(guān)系式;

(2)當(dāng)x為何值時(shí),矩形EFGH的面積S最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為半圓O的直徑,P為半圓上的一個(gè)動(dòng)點(diǎn)(不含端點(diǎn)),以OP、OB為一組鄰邊作POBQ,連接OQAP,設(shè)OQ、AP的中點(diǎn)分別為MN,連接PM、ON

1)試判斷四邊形OMPN的形狀,并說明理由.

2)若點(diǎn)P從點(diǎn)B出發(fā),以每秒15°的速度,繞點(diǎn)O在半圓上逆時(shí)針方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts

①試求:當(dāng)t為何值時(shí),四邊形OMPN的面積取得最大值?并判斷此時(shí)直線PQ與半圓O的位置關(guān)系(需說明理由);

②是否存在這樣的t,使得點(diǎn)Q落在半圓O內(nèi)?若存在,請(qǐng)直接寫出t的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為獎(jiǎng)勵(lì)在家自主學(xué)習(xí)有突出表現(xiàn)的學(xué)生,決定購買筆記本和鋼筆作為獎(jiǎng)品.已知1本筆記本和4支鋼筆共需100元,4本筆記本和6支鋼筆共需190元.

1)分別求一本筆記本和一支鋼筆的售價(jià);

2)若學(xué)校準(zhǔn)備購進(jìn)這兩種獎(jiǎng)品共90份,并且筆記本的數(shù)量不多于鋼筆數(shù)量的3倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ACB=90°.AC=8,BC=3,點(diǎn)DBC邊上動(dòng)點(diǎn),連接AD交以CD為直徑的圓于點(diǎn)E,則線段BE長度的最小值為( )

A.1B.C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“某市為處理污水,需要鋪設(shè)一條長為4000米的管道,為了盡量減少施工對(duì)交通所造成的影響,實(shí)際施工時(shí)×××××.設(shè)原計(jì)劃每天鋪設(shè)管道x米,則可得方程.”根據(jù)此情境,題中用“×××××”表示得缺失的條件,應(yīng)補(bǔ)為(  )

A.每天比原計(jì)劃多鋪設(shè)10米,結(jié)果延期20天才完成任務(wù)

B.每天比原計(jì)劃少鋪設(shè)10米,結(jié)果延期20天才完成任務(wù)

C.每天比原計(jì)劃多鋪設(shè)10米,結(jié)果提前20天完成任務(wù)

D.每天比原計(jì)劃少鋪設(shè)10米,結(jié)果提前20天完成任務(wù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出

1)如圖1,已知三角形,請(qǐng)?jiān)?/span>邊上確定一點(diǎn),使得的值最。

問題探究

2)如圖2,在等腰中,,點(diǎn)邊上一動(dòng)點(diǎn),分別過點(diǎn),點(diǎn)作線段所在直線的垂線,垂足為點(diǎn),若,求線段的取值范圍,并求的最大值.

問題解決

3)如圖3,正方形是一塊蔬菜種植基地,邊長為3千米,四個(gè)頂點(diǎn)處都建有一個(gè)蔬菜采購點(diǎn),根據(jù)運(yùn)輸需要,經(jīng)過頂點(diǎn)處和邊的兩個(gè)三等分點(diǎn)之間的某點(diǎn)建設(shè)一條向外運(yùn)輸?shù)目焖偻ǖ,其余三個(gè)采購點(diǎn)都修建垂直于快速通道的蔬菜輸送軌道,分別為、、.若你是此次項(xiàng)目設(shè)計(jì)的負(fù)責(zé)人,要使三條運(yùn)輸軌道的距離之和最小,你能不能按照要求進(jìn)行規(guī)劃,請(qǐng)通過計(jì)算說明.

查看答案和解析>>

同步練習(xí)冊答案