【題目】用直尺和圓規(guī)作一個角等于已知角,如圖,能得出∠A′O′B′=∠AOB的依據(jù)是(
A.(SAS)
B.(SSS)
C.(ASA)
D.(AAS)

【答案】B
【解析】解:作圖的步驟: ①以O為圓心,任意長為半徑畫弧,分別交OA、OB于點C、D;
②任意作一點O′,作射線O′A′,以O′為圓心,OC長為半徑畫弧,交O′A′于點C′;
③以C′為圓心,CD長為半徑畫弧,交前弧于點D′;
④過點D′作射線O′B′.
所以∠A′O′B′就是與∠AOB相等的角;
作圖完畢.
在△OCD與△O′C′D′,

∴△OCD≌△O′C′D′(SSS),
∴∠A′O′B′=∠AOB,
顯然運用的判定方法是SSS.
故選:B.
我們可以通過其作圖的步驟來進行分析,作圖時滿足了三條邊對應相等,于是我們可以判定是運用SSS,答案可得.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,射線OM平分∠AOC,ON⊥OM,若∠AOM=35°,則∠CON的度數(shù)為(  )
A.35°
B.45°
C.55°
D.65°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,C是線段BE上一點,以BC、CE為邊分別在BE的同側作等邊△ABC和等邊△DCE,連結AE、BD.
(1)求證:BD=AE;
(2)如圖2,若M、N分別是線段AE、BD上的點,且AM=BN,請判斷△CMN的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中,真命題是( .

A.兩條對角線垂直且相等的四邊形是正方形

B.兩條對角線互相垂直的四邊形是菱形

C.兩條對角線互相平分且相等的四邊形是矩形

D.一組對邊平行,另一組對邊相等的四邊形是平行四邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線與坐標軸分別交于點A(0,8)、B(8,0)和點E,動點C從原點O開始沿OA方向以每秒1個單位長度移動,動點D從點B開始沿BO方向以每秒1個單位長度移動,動點C、D同時出發(fā),當動點D到達原點O時,點C、D停止運動.

(1)直接寫出拋物線的解析式:

(2)求△CED的面積S與D點運動時間t的函數(shù)解析式;當t為何值時,△CED的面積最大?最大面積是多少?

(3)當△CED的面積最大時,在拋物線上是否存在點P(點E除外),使△PCD的面積等于△CED的最大面積?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形OABC中,O為直角坐標系的原點,A、B、C的坐標分別為(14,0)、(14,3)、(4,3).點P、Q同時從原點出發(fā),分別作勻速運動,其中點P沿OA向終點A運動,速度為每秒1個單位;點Q沿OC、CB向終點B運動,當這兩點中有一點到達自己的終點時,另一點也停止運動.設P從出發(fā)起運動了t秒.

(1)如果點Q的速度為每秒2個單位,①試分別寫出這時點Q在OC上或在CB上時的坐標(用含t的代數(shù)式表示,不要求寫出t的取值范圍);

②求t為何值時,PQ∥OC?

(2)如果點P與點Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,①試用含t的代數(shù)式表示這時點Q所經(jīng)過的路程和它的速度;

②試問:這時直線PQ是否可能同時把梯形OABC的面積也分成相等的兩部分?如有可能,求出相應的t的值和P、Q的坐標;如不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于M,交AC于N.
(1)若∠ABC=70°,則∠MNA的度數(shù)是
(2)連接NB,若AB=8cm,△NBC的周長是14cm. ①求BC的長;
②在直線MN上是否存在P,使由P、B、C構成的△PBC的周長值最小?若存在,標出點P的位置并求△PBC的周長最小值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=40°,∠C=70°,AD是△BAC的角平分線,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點P(2,﹣4)關于原點對稱的點的坐標是(  )

A. (﹣2,4) B. (2,4) C. (﹣2,﹣4) D. (﹣4,2)

查看答案和解析>>

同步練習冊答案