如圖,在平面直角坐標(biāo)系中,直線l經(jīng)過點(diǎn)A(2,-3),與x軸交于點(diǎn)B,且與直線y=3x-
8
3
平行.
(1)求:直線l的函數(shù)解析式及點(diǎn)B的坐標(biāo);
(2)如直線l上有一點(diǎn)M(a,-6),過點(diǎn)M作x軸的垂線,交直線y=3x-
8
3
于點(diǎn)N,在線段MN上求一點(diǎn)P,使△PAB是直角三角形,請(qǐng)求出點(diǎn)P的坐標(biāo).
(1)設(shè)直線l的解析式為y=kx+b(k≠0),
∵直線l平行于y=3x-
8
3
,
∴k=3,
∵直線l經(jīng)過點(diǎn)A(2,-3),
∴-3=2×3+b,b=-9,
∴直線l的解析式為y=3x-9,點(diǎn)B坐標(biāo)為(3,0);

(2)∵點(diǎn)M(a,-6)在直線l上,
∴a=1,則可設(shè)點(diǎn)P(1,y),
N(1,
1
3
)
,∴y的取值范圍是-6≤y≤
1
3

當(dāng)AB為斜邊時(shí),PA2+PB2=AB2,即1+(y+3)2+4+y2=10,
解得y1=-1,y2=-2,∴P(1,-1),P(1,-2),
當(dāng)PB為斜邊時(shí),PA2+AB2=PB2,即1+(y+3)2+10=4+y2
解得y=-
8
3
,∴P(1,-
8
3
)
,
當(dāng)PA為斜邊時(shí),PB2+AB2=PA2,即10+4+y2=1+(y+3)2,
解得y=
2
3
,(舍去),
∴綜上所述,點(diǎn)P的坐標(biāo)為P1(1,-1),P2(1,-2),P3(1,-
8
3
)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

直線l過點(diǎn)(1,-2),它與x軸的正半軸相交于點(diǎn)M,與y軸的負(fù)半軸相交于點(diǎn)N.如果M、N到原點(diǎn)的距離之和等于6.求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系xOy中,點(diǎn)A1,A2,A3,…和B1,B2,B3,…分別在直線y=kx+b和x軸上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2
7
2
3
2
),那么點(diǎn)An的縱坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,折線A-B-C是某市區(qū)出租汽車所收費(fèi)用y(元)與出租車行駛路程x(km)之間的函數(shù)關(guān)系圖象,某人付車費(fèi)15.6元,則出租車行走了 如圖,折線A-B-C是某市區(qū)出租汽車所收費(fèi)用y(元)與出租車行駛路程x(km)之間的函數(shù)關(guān)系圖象,某人付車費(fèi)15.6元,則出租車行走了______千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

“五一黃金周”的某一天,小明全家上午8時(shí)自駕小汽車從家里出發(fā),到距離180千米的某著名旅游景點(diǎn)游玩.該小汽車離家的距離s(千米)與時(shí)間t(時(shí))的關(guān)系可以用圖中的曲線表示.根據(jù)圖象提供的有關(guān)信息,解答下列問題:
(1)小明全家在旅游景點(diǎn)游玩了多少小時(shí)?
(2)求出返程途中,s(千米)與時(shí)間t(時(shí))的函數(shù)關(guān)系,并回答小明全家到家是什么時(shí)間?
(3)若出發(fā)時(shí)汽車油箱中存油15升,該汽車的油箱總?cè)萘繛?5升,汽車每行駛1千米耗油
1
9
升.請(qǐng)你就“何時(shí)加油和加油量”給小明全家提出一個(gè)合理化的建議.(加油所用時(shí)間忽略不計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=-
3
3
x+1
與x軸、y軸分別交于A、B,以線段AB為直角邊在第一象限內(nèi)作等腰Rt△ABC,∠BAC=90°,如果在第二象限內(nèi)有一點(diǎn)P(a,
1
2
),且△ABP的面積與△ABC的面積相等,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

大剛與爺爺沿相同的路線同時(shí)從山腳出發(fā)到達(dá)山頂?shù)倪^程中,各自行進(jìn)的路程隨時(shí)間變化的圖象如圖10所示.請(qǐng)根據(jù)圖象解答下列問題:
(1)試寫出在登山過程中,大剛行進(jìn)的路程S1(km)與時(shí)間t(h)的函數(shù)關(guān)系式;爺爺行進(jìn)的路程S2(km)與時(shí)間t(h)的函數(shù)關(guān)系式;(都不要求寫出自變量t的取值范圍)
(2)當(dāng)大剛到達(dá)山頂時(shí),爺爺行進(jìn)到出路上某點(diǎn)A處,求點(diǎn)A距山頂?shù)木嚯x;
(3)在(2)的條件下,設(shè)爺爺從A處繼續(xù)登山,大剛到達(dá)山頂休息1h后沿原路下山,在距離山頂1.5km的B處與爺爺相遇,求大剛下山時(shí)的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面之間坐標(biāo)系中,一次函數(shù)y=--
1
2
x+2
的圖象與x軸y軸分別相交于A,B兩點(diǎn),在第一象限內(nèi)是否存在點(diǎn)P,使得以點(diǎn)P,O,B為頂點(diǎn)的三角形與△AOB相似?若存在,請(qǐng)寫出所以符合條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為緩解油價(jià)上漲給出租車行業(yè)帶來的成本壓力,某巿自2007年11月17日起,調(diào)整出租車運(yùn)價(jià),調(diào)整方案見下列表格及圖象(其中a,b,c為常數(shù)).
設(shè)行駛路程xkm時(shí),調(diào)價(jià)前的運(yùn)價(jià)y1(元),調(diào)價(jià)后的運(yùn)價(jià)為y2(元).如圖,折線ABCD表示y2與x之間的函數(shù)關(guān)系式,線段EF表示當(dāng)0≤x≤3時(shí),y1與x的函數(shù)關(guān)系式,根據(jù)圖表信息,完成下列各題:
行駛路程收費(fèi)標(biāo)準(zhǔn)
調(diào)價(jià)前調(diào)價(jià)后
不超過3km的部分起步價(jià)6元起步價(jià)a元
超過3km不超出6km的部分每公里2.1元每公里b元
超出6km的部分每公里c元
①填空:a=______,b=______,c=______;
②寫出當(dāng)x>3時(shí),y1與x的關(guān)系,并在上圖中畫出該函數(shù)的圖象;
③函數(shù)y1與y2的圖象是否存在交點(diǎn)?若存在,求出交點(diǎn)的坐標(biāo),并說明該點(diǎn)的實(shí)際意義;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案