在平面直角坐標(biāo)系xOy中,點(diǎn)A1,A2,A3,…和B1,B2,B3,…分別在直線y=kx+b和x軸上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2
7
2
3
2
),那么點(diǎn)An的縱坐標(biāo)是______.
∵A1(1,1),A2
7
2
,
3
2
)在直線y=kx+b上,
k+b=1
7
2
k+b=
3
2
,
解得
k=
1
5
b=
4
5

∴直線解析式為y=
1
5
x+
4
5
,
如圖,設(shè)直線與x軸、y軸的交點(diǎn)坐標(biāo)分別為N、M,
當(dāng)x=0時(shí),y=
4
5
,
當(dāng)y=0時(shí),
1
5
x+
4
5
=0,解得x=-4,
∴點(diǎn)M、N的坐標(biāo)分別為M(0,
4
5
),N(-4,0),
∴tan∠MNO=
MO
NO
=
4
5
4
=
1
5
,
作A1C1⊥x軸于點(diǎn)C1,A2C2⊥x軸于點(diǎn)C2,A3C3⊥x軸于點(diǎn)C3
∵A1(1,1),A2
7
2
,
3
2
),
∴OB2=OB1+B1B2=2×1+2×
3
2
=2+3=5,
tan∠MNO=
A3C3
NC3
=
A3C3
4+5+B2C3
=
1
5
,
∵△B2A3B3是等腰直角三角形,
∴A3C3=B2C3,
∴A3C3=
9
4
=(
3
2
2,
同理可求,第四個(gè)等腰直角三角形A4C4=
27
8
=(
3
2
3,
依此類推,點(diǎn)An的縱坐標(biāo)是(
3
2
n-1
故答案為:(
3
2
n-1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知A、B是直線y=2x-2與x軸、y軸的交點(diǎn),C在A正右邊,D在B正上方,CA=2,DB=3,求C、D所在直線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線l經(jīng)過點(diǎn)A(2,-3),與x軸交于點(diǎn)B,且與直線y=3x-
8
3
平行.
(1)求:直線l的函數(shù)解析式及點(diǎn)B的坐標(biāo);
(2)如直線l上有一點(diǎn)M(a,-6),過點(diǎn)M作x軸的垂線,交直線y=3x-
8
3
于點(diǎn)N,在線段MN上求一點(diǎn)P,使△PAB是直角三角形,請求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)M(-1,1)及點(diǎn)N(0,2),設(shè)該圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,問:在x軸上是否存在點(diǎn)P,使ABP為等腰三角形?若存在,把符合條件的點(diǎn)P的坐標(biāo)都求出來;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖.直線AB值對應(yīng)的函數(shù)解析式是( 。
A.y=-
3
2
x+3
B.y=
3
2
x+3
C.y=-
2
3
x+3
D.y=
2
3
x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,把等腰直角△ABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,點(diǎn)A、B的坐標(biāo)分別為(1,0)(4,0),將等腰直角△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在直線y=x-2上時(shí),則等腰直角△ABC被直線y=x-2掃過的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,有一條直線l:y=-
3
3
x+4
與x軸、y軸分別交于點(diǎn)M、N,一個(gè)高為3的等邊三角形ABC,邊BC在x軸上,將此三角形沿著x軸的正方向平移.
(1)在平移過程中,得到△A1B1C1,此時(shí)頂點(diǎn)A1恰落在直線l上,寫出A1點(diǎn)的坐標(biāo)______;
(2)繼續(xù)向右平移,得到△A2B2C2,此時(shí)它的外心P恰好落在直線l上,求P點(diǎn)的坐標(biāo);
(3)在直線l上是否存在這樣的點(diǎn),與(2)中的A2、B2、C2任意兩點(diǎn)能同時(shí)構(gòu)成三個(gè)等腰三角形?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某縣為了打造梨鄉(xiāng)水城,發(fā)展旅游業(yè),從2008年開始擴(kuò)大梨樹種植面積,梨樹種植面積y(百畝)與時(shí)間x(年)之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式;(不必寫自變量x的取值范圍)
(2)求該縣2012年梨樹的種植面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

A地有機(jī)器16臺(tái),B地有機(jī)器12臺(tái),現(xiàn)要把化肥運(yùn)往甲、乙兩地,現(xiàn)已知甲地需要15臺(tái),乙地需要13臺(tái).如果從A地運(yùn)往甲、乙兩地運(yùn)費(fèi)分別是500元/臺(tái)與400元/臺(tái),從B地運(yùn)往甲、乙兩地運(yùn)費(fèi)分別是300元/臺(tái)與600元/臺(tái),怎樣調(diào)運(yùn)花錢最少?

查看答案和解析>>

同步練習(xí)冊答案