【題目】如圖,四邊形ABCD是一個(gè)菱形綠地,其周長(zhǎng)為40 m,∠ABC=120°,在其內(nèi)部有一個(gè)四邊形花壇EFGH,其四個(gè)頂點(diǎn)恰好在菱形ABCD各邊的中點(diǎn),現(xiàn)在準(zhǔn)備在花壇中種植茉莉花,其單價(jià)為10元/m2,請(qǐng)問(wèn)需投資金多少元?(結(jié)果保留整數(shù))
【答案】866元
【解析】分析:連接BD,AC,由菱形ABCD的周長(zhǎng)求出邊長(zhǎng),再由∠ABC的度數(shù)確定出三角形ABD與三角形BCD都為等邊三角形,進(jìn)而求出BD與AC的長(zhǎng),由E、F、G、H分別為中點(diǎn)確定出四邊形EFGH為矩形,求出矩形邊長(zhǎng),進(jìn)而求出矩形面積,求出所求即可.
詳解:連接BD,AC.
∵菱形ABCD的周長(zhǎng)為40m,∴菱形ABCD的邊長(zhǎng)為10m.
∵∠ABC=120°,∴△ABD,△BCD是等邊三角形,∴對(duì)角線BD=10m,AC=10m.
∵E,F,G,H是菱形ABCD各邊的中點(diǎn),∴四邊形EFGH是矩形,矩形的邊長(zhǎng)分別為5m,5m,∴矩形EFGH的面積為5×5=50(m2),即需投資金為50×10=500≈866(元).
答:需投資金為866元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)方形OABC,O為平面直角坐標(biāo)系的原點(diǎn),OA=5,OC=3,點(diǎn)B在第三象限.
(1)求點(diǎn)B的坐標(biāo);
(2)如圖1,若過(guò)點(diǎn)B的直線BP與長(zhǎng)方形OABC的邊交于點(diǎn)P,且將長(zhǎng)方形OABC的面積分為1:4兩部分,求點(diǎn)P的坐標(biāo);
(3)如圖2,M為x軸負(fù)半軸上一點(diǎn),且∠CBM=∠CMB,N是x軸正半軸上一動(dòng)點(diǎn),∠MCN的平分線CD交BM的延長(zhǎng)線于點(diǎn)D,在點(diǎn)N運(yùn)動(dòng)的過(guò)程中,的值是否變化?若不變,求出其值;若變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在△ABC中,AB=AC.過(guò)A點(diǎn)的直線a從與邊AC重合的位置開(kāi)始繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)角θ,直線a交BC邊于點(diǎn)P(點(diǎn)P不與點(diǎn)B、點(diǎn)C重合),△BMN的邊MN始終在直線a上(點(diǎn)M在點(diǎn)N的上方),且BM=BN,連接CN.
(1)當(dāng)∠BAC=∠MBN=90°時(shí),
①如圖a,當(dāng)θ=45°時(shí),∠ANC的度數(shù)為△;
②如圖b,當(dāng)θ≠45°時(shí),①中的結(jié)論是否發(fā)生變化?說(shuō)明理由;
(2)如圖c,當(dāng)∠BAC=∠MBN≠90°時(shí),請(qǐng)直接寫(xiě)出∠ANC與∠BAC之間的數(shù)量關(guān)系,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜邊AB邊中線CD,得到第一個(gè)三角形ACD;DE⊥BC于點(diǎn)E,作Rt△BDE斜邊DB上中線EF,得到第二個(gè)三角形DEF;依此作下去…則第n個(gè)三角形的面積等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】水果店以每箱60元新進(jìn)一批蘋(píng)果共400箱,為計(jì)算總重量,從中任選30箱蘋(píng)果稱(chēng)重,發(fā)現(xiàn)每箱蘋(píng)果重量都在10千克左右,現(xiàn)以10千克為標(biāo)準(zhǔn),超過(guò)10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負(fù)數(shù),將稱(chēng)重記錄如下:
規(guī)格 | ﹣0.2 | ﹣0.1 | 0 | 0.1 | 0.2 | 0.5 |
筐數(shù) | 5 | 8 | 2 | 6 | 8 | 1 |
(1)求30箱蘋(píng)果的總重量
(2)若每千克蘋(píng)果的售價(jià)為10元,則賣(mài)完這批蘋(píng)果共獲利多少元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線AB,CD相交于點(diǎn)O,OE平分∠AOD,F(xiàn)O⊥AB,垂足為O,∠BOD=∠DOE.
(1)求∠BOF的度數(shù);
(2)請(qǐng)寫(xiě)出圖中與∠BOD相等的所有的角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD位于平面直角坐標(biāo)系的第一象限,B、C在x軸上A點(diǎn)函數(shù)上,且AB∥CD∥y軸,AD∥x軸,B(1,0)、C(3,0)。
⑴試判斷四邊形ABCD的形狀。
⑵如圖若點(diǎn)P是線段BD上一點(diǎn)PE⊥BC于E,M是PD的中點(diǎn),連EM、AM。
求證:AM=EM
⑶在圖中,連結(jié)AE交BD于N,則下列兩個(gè)結(jié)論:
①值不變;②的值不變。其中有且僅有一個(gè)是正確的,請(qǐng)選擇正確的結(jié)論證明并求其值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,解答下面的問(wèn)題:
我們知道方程有無(wú)數(shù)個(gè)解,但在實(shí)際生活中我們往往只需求出其
正整數(shù)解.
例:由,得:,(x、y為正整數(shù))
∴,則有.又為正整數(shù),則為正整數(shù).由2與3互質(zhì),可知:x為3的倍數(shù),從而x=3,代入∴2x+3y=12的正整數(shù)解為
問(wèn)題:
(1)請(qǐng)你寫(xiě)出方程的一組正整數(shù)解: .
(2)若為自然數(shù),則滿(mǎn)足條件的x值為 .
(3)七年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,購(gòu)買(mǎi)了單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎(jiǎng)品,共花費(fèi)35元,問(wèn)有幾種購(gòu)買(mǎi)方案?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com