【題目】閱讀:所謂勾股數(shù)就是滿足方程x2+y2=z2的正整數(shù)解,即滿足勾股定理的三個(gè)正整數(shù)構(gòu)成的一組數(shù).我國(guó)古代數(shù)學(xué)專著《九章算術(shù)》一書,在世界上第一次給出該方程的解為:,y=mn,,其中m>n>0,m、n是互質(zhì)的奇數(shù).應(yīng)用:當(dāng)n=5時(shí),求一邊長(zhǎng)為12的直角三角形另兩邊的長(zhǎng).
【答案】見(jiàn)解析
【解析】分析:由n=5,得到①,y=5m②,③,根據(jù)直角三角形有一邊長(zhǎng)為12,列方程即可得到結(jié)論.
詳解:∵n=5,直角三角形一邊長(zhǎng)為12,
∴有三種情況:
當(dāng)x =12 時(shí),
.
解得m1=7,m2= -7(舍去).
∴y= mn =35.
∴.
∴該情況符合題意.
② 當(dāng)y =12時(shí),
5m =12,
.
∵m為奇數(shù),
∴舍去.
③ 當(dāng)z =12時(shí),
,
,
此方程無(wú)實(shí)數(shù)解.
綜上所述:當(dāng)n=5時(shí), 一邊長(zhǎng)為12的直角三角形另兩邊的長(zhǎng)分別為35,37.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景
如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點(diǎn)D,則D為BC的中點(diǎn),
,于是.
遷移應(yīng)用
(1)如圖2,△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=120°,D,E,C三點(diǎn)在同一直線上,連接BD.
(ⅰ)求證:△ADB≌△AEC;
(ⅱ)請(qǐng)直接寫出線段AD,BD,CD之間的等量關(guān)系式.
拓展延伸
(2)如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點(diǎn)C關(guān)于BM的對(duì)稱點(diǎn)E,連接AE并延長(zhǎng)交BM于點(diǎn)F,連接CE,CF.
(ⅰ)證明:△CEF是等邊三角形;
(ⅱ)若AE=5,CE=2,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知多項(xiàng)式2x3y﹣xy+16的次數(shù)為a,常數(shù)項(xiàng)為b,a,b分別對(duì)應(yīng)著數(shù)軸上的A、B兩點(diǎn).
(1)a= ,b= ;并在數(shù)軸上畫出A、B兩點(diǎn);
(2)若點(diǎn)P從點(diǎn)A出發(fā),以每秒3個(gè)單位長(zhǎng)度單位的速度向x軸正半軸運(yùn)動(dòng),求運(yùn)動(dòng)時(shí)間為多少時(shí),點(diǎn)P到點(diǎn)A的距離是點(diǎn)P到點(diǎn)B的距離的2倍;
(3)數(shù)軸上還有一點(diǎn)C的坐標(biāo)為30,若點(diǎn)P和Q同時(shí)從點(diǎn)A和點(diǎn)B出發(fā),分別以每秒3個(gè)單位長(zhǎng)度和每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),P到達(dá)C點(diǎn)后,再立即以同樣的速度返回,運(yùn)動(dòng)的終點(diǎn)A,求點(diǎn)P和點(diǎn)Q運(yùn)動(dòng)多少秒時(shí),P,Q兩點(diǎn)之間的距離為4,并求出此時(shí)點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系 xOy 中,正比例函數(shù) y=kx 與一次函數(shù) y=x+b 的圖象相交于點(diǎn) A(4,3).過(guò)點(diǎn) P(2,0)作 x 軸的垂線,分別交正比例函數(shù)的圖象于點(diǎn) B,交一次函數(shù)的圖象于點(diǎn) C, 連接 OC.
(1)求這兩個(gè)函數(shù)解析式;
(2)求△OBC 的面積;
(3)在 x 軸上是否存在點(diǎn) M,使△AOM 為等腰三角形? 若存在,直接寫出 M 點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=54°,AD是△ABC的角平分線.求作AB的垂直平分線MN交AD于點(diǎn)E,連接BE;并證明DE=DB.(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解成都市初中學(xué)生“數(shù)學(xué)核心素養(yǎng)”的掌握情況,教育科學(xué)院命題教師赴某校初三年級(jí)進(jìn)行調(diào) 研,命題教師將隨機(jī)抽取的部分學(xué)生成績(jī)(得分為整數(shù),滿分 160 分)分為 5 組:第一組 85~100;第二組100~115;第三組 115~130;第四組 130~145;第五組 145~160,統(tǒng)計(jì)后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計(jì)圖,觀察圖形的信息,回答下列問(wèn)題:
(1)本次調(diào)查共隨機(jī)抽取了該年級(jí)多少名學(xué)生?成績(jī)?yōu)榈谖褰M的有多少名學(xué)生?
(2)針對(duì)考試成績(jī)情況,現(xiàn)各組分別派出1名代表(分別用 A、B、C、D、E 表示5個(gè)小組中選出來(lái)的同學(xué)),命題教師從這5名同學(xué)中隨機(jī)選出兩名同學(xué)談?wù)勛鲱}的感想,請(qǐng)你用列表或畫樹狀圖的方法求出所選兩名同學(xué)剛好來(lái)自第一、五組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=5,以B為圓心BC為半徑畫弧交AD于點(diǎn)E,連接CE,作BF⊥CE,垂足為F,則tan∠FBC的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x﹣2分別交x軸、y軸于A、B兩點(diǎn),P為AB的中點(diǎn),PC⊥x軸于點(diǎn)C,延長(zhǎng)PC交反比例函數(shù)y=(x<0)的圖象于點(diǎn)D,且OD∥AB.
(1)求k的值;
(2)連接OP、AD,求證:四邊形APOD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉行“漢字聽寫”比賽,每位學(xué)生聽寫漢字39個(gè).比賽結(jié)束后隨機(jī)抽查部分學(xué)生聽寫結(jié)果,圖1,圖2是根據(jù)抽查結(jié)果繪制的統(tǒng)計(jì)圖的一部分.
組別 | 聽寫正確的個(gè)數(shù)x | 人數(shù) |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根據(jù)以上信息解決下列問(wèn)題:
(1)本次共隨機(jī)抽查了多少名學(xué)生,求出m,n的值并補(bǔ)全圖2的條形統(tǒng)計(jì)圖;
(2)求出圖1中∠α的度數(shù);
(3)該校共有3000名學(xué)生,如果聽寫正確的個(gè)數(shù)少于24個(gè)定為不合格,請(qǐng)你估計(jì)這所學(xué)校本次比賽聽寫不合格的學(xué)生人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com