【題目】在△ABC中,點(diǎn)D,E,F(xiàn)分別在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.
(1)如圖1,當(dāng)DE=DF時(shí),圖1中是否存在與AB相等的線段?若存在,請(qǐng)找出,并加以證明;若不存在,說明理由;
(2)如圖2,當(dāng)DE=kDF(其中0<k<1)時(shí),若∠A=90°,AF=m,求BD的長(zhǎng)(用含k,m的式子表示).
【答案】(1)AB=BE;(2)BD=.
【解析】
試題分析:(1)如圖1,連結(jié)AE.由DE=DF,得到∠DEF=∠DFE,由∠ADF+∠DEC=180°,得到∠ADF=∠DEB.由∠AFE=∠BDE,得到∠AFE+∠ADE=180°,得到A、D、E、F四點(diǎn)共圓,由圓周角定理得出∠DAE=∠DFE=∠DEF,∠ADF=∠AEF.再由∠ADF=∠DEB=∠AEF,得出∠AEF+∠AED=∠DEB+∠AED,則∠AEB=∠DEF=∠BAE,由等角對(duì)等邊得出AB=BE;
(2)如圖2,連結(jié)AE.由A、D、E、F四點(diǎn)共圓,得到∠ADF=∠AEF,由∠DAF=90°,得到∠DEF=90°,再證明∠DEB=∠AEF.又∠AFE=∠BDE,得到△BDE∽△AFE,利用相似三角形對(duì)應(yīng)邊成比例得到.在Rt△DEF中,利用勾股定理求出EF=DF,然后將AF=m,DE=kDF代入,計(jì)算即可求解.
試題解析:(1)如圖1,連結(jié)AE.∵DE=DF,∴∠DEF=∠DFE,∵∠ADF+∠DEC=180°,∴∠ADF=∠DEB,∵∠AFE=∠BDE,∴∠AFE+∠ADE=180°,∴A、D、E、F四點(diǎn)共圓,∴∠DAE=∠DFE=∠DEF,∠ADF=∠AEF,∵∠ADF=∠DEB=∠AEF,∴∠AEF+∠AED=∠DEB+∠AED,∴∠AEB=∠DEF=∠BAE,∴AB=BE;
(2)如圖2,連結(jié)AE.∵∠AFE=∠BDE,∴∠AFE+∠ADE=180°,∴A、D、E、F四點(diǎn)共圓,∴∠ADF=∠AEF,∵∠DAF=90°,∴∠DEF=90°,∵∠ADF+∠DEC=180°,∴∠ADF=∠DEB,∵∠ADF=∠AEF,∴∠DEB=∠AEF,在△BDE與△AFE中,∵∠DEB=∠AEF,∠BDE=∠AFE,∴△BDE∽△AFE,∴,在直角△DEF中,∵∠DEF=90°,DE=kDF,∴EF==DF,∴=,∴BD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,∠QPN的頂點(diǎn)P在正方形ABCD兩條對(duì)角線的交點(diǎn)處,∠QPN=α,將∠QPN繞點(diǎn)P旋轉(zhuǎn),旋轉(zhuǎn)過程中∠QPN的兩邊分別與正方形ABCD的邊AD和CD交于點(diǎn)E和點(diǎn)F(點(diǎn)F與點(diǎn)C,D不重合).
(1)如圖①,當(dāng)α=90°時(shí),DE,DF,AD之間滿足的數(shù)量關(guān)系是 ;
(2)如圖②,將圖①中的正方形ABCD改為∠ADC=120°的菱形,其他條件不變,當(dāng)α=60°時(shí),(1)中的結(jié)論變?yōu)镈E+DF=AD,請(qǐng)給出證明;
(3)在(2)的條件下,若旋轉(zhuǎn)過程中∠QPN的邊PQ與射線AD交于點(diǎn)E,其他條件不變,探究在整個(gè)運(yùn)動(dòng)變化過程中,DE,DF,AD之間滿足的數(shù)量關(guān)系,直接寫出結(jié)論,不用加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將某樣本數(shù)據(jù)分析整理后分成6組,且組距為5,畫頻數(shù)分布折線圖時(shí),從左到右第三組的組中值為20.5,則分布兩端虛設(shè)組組中值為 和 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知拋物線y=ax2+bx+c的對(duì)稱軸是直線x=-1,若關(guān)于x的一元二次方程ax2+bx+c=0的一個(gè)根為2,則該方程的另一個(gè)根為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加強(qiáng)學(xué)生的安全意識(shí),某校組織了學(xué)生參加安全知識(shí)競(jìng)賽.從中抽取了部分學(xué)生成績(jī)(得分?jǐn)?shù)取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),繪制統(tǒng)計(jì)頻數(shù)分布直方圖(未完成)和扇形圖如下,請(qǐng)解答下列問題:
(1)A組的頻數(shù)a比B組的頻數(shù)b小24,樣本容量 , a為:
(2)n為°,E組所占比例為%:
(3)補(bǔ)全頻數(shù)分布直方圖;
(4)若成績(jī)?cè)?0分以上優(yōu)秀,全校共有2000名學(xué)生,估計(jì)成績(jī)優(yōu)秀學(xué)生有名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)共產(chǎn)黨第十八次全國(guó)代表大會(huì)將于2012年10月15日至18日在北京召開.據(jù)統(tǒng)計(jì),截至2011年底,全國(guó)的共產(chǎn)黨員人數(shù)已超過80300000,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法可表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分線。
(1)求∠DAE的度數(shù);
(2)指出AD是哪幾個(gè)三角形的高。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只跳蚤在第一象限及x軸、y軸上跳動(dòng),在第一秒鐘,它從原點(diǎn)跳動(dòng)到(0,1),然后接著按圖中箭頭所示方向跳動(dòng):即(0,0)→(0,1) →(1,1)→(1,0)→…,且每秒跳動(dòng)一個(gè)單位,那么第35秒時(shí)跳蚤所在位置的坐標(biāo)是( )
A.(4,0)
B.(5,0)
C.(0,5)
D.(5,5)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com