【題目】2018年9月17日世界人工智能大會在.上海召開,人工智能的變革力在教育、制造等領(lǐng)域加速落地.在某市舉辦的一次中學(xué)生機(jī)器人足球賽中,有四個代表隊(duì)進(jìn)入決賽,決賽中,每個隊(duì)分別與其它三個隊(duì)進(jìn)行主客場比賽各一場(即每個隊(duì)要進(jìn)行6場比賽),以下是積分表的一-部分.
(說明:積分=勝場積分十平場積分+負(fù)場積分)
(1)D代表隊(duì)的凈勝球數(shù)m=______;
(2)本次決賽中,勝一場積______分,平一場積______分,負(fù)一場積_______分;
(3)此次競賽的獎金分配方案為:進(jìn)入決賽的每支代表隊(duì)都可以獲得參賽獎金6000元;另外,在決賽期間,每勝一場可以再獲得獎金2000元,每平一場再獲得獎金1000元.請根據(jù)表格提供的信息,求出冠軍A隊(duì)一共能獲得多少獎金.
【答案】(1)-8;(2)5,2,0;(3)15000
【解析】
(1)根據(jù)凈勝球=進(jìn)球-失球即可求出答案;
(2)根據(jù)表格先求出負(fù)一場的分?jǐn)?shù),設(shè)勝一場得x分,平一場得y分,再根據(jù)B、C代表隊(duì)列方程組求出答案;
(3)設(shè)A隊(duì)勝a場,平b場,根據(jù)場數(shù)6場,積22分列方程組解答.
(1)m=5-13=-8,
故答案為:-8;
(2)由表格知:D隊(duì)負(fù)6場得0分,∴負(fù)一場得0分,
設(shè)勝一場得x分,平一場得y分,
,解得,
∴勝一場積5分,平一場積2分,負(fù)一場積0分,
故答案為:5,2,0;
(3)設(shè)A隊(duì)勝a場,平b場,
,解得,
∴冠軍A隊(duì)一共能獲得獎金是(元).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=x+b與雙曲線y=的一個交點(diǎn)為A(2,4),與y軸交于點(diǎn)B.
(1)求m的值和點(diǎn)B的坐標(biāo);
(2)點(diǎn)P在雙曲線y=上,△OBP的面積為8,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)“綜合與實(shí)踐”小組的同學(xué)把“測量斜拉索頂端到橋面的距離”作為一項(xiàng)課題活動,他們制訂了測量方案,并利用課余時(shí)間借助該橋斜拉索完成了實(shí)地測量.測量結(jié)果如下:如圖,兩側(cè)最長斜拉索,相交于點(diǎn),分別與橋面交于,兩點(diǎn),且點(diǎn),,在同一豎直平面內(nèi).測得,,米,請幫助該小組根據(jù)測量數(shù)據(jù),求斜拉索頂端點(diǎn)到的距離.(參考數(shù)據(jù):,,,,,.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅行社的一則廣告如下:
甲公司想分批組織員工到延安紅色旅游學(xué)習(xí).
(1)如果第一批組織40人去學(xué)習(xí),則公司應(yīng)向旅行社交費(fèi) 元;
(2)如果公司計(jì)劃用29250元組織第一批員工去學(xué)習(xí),問這次旅游學(xué)習(xí)應(yīng)安排多少人參加?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸、軸分別相交于、兩點(diǎn),拋物線經(jīng)過點(diǎn),交軸正半軸于點(diǎn).
(1)求該拋物線的函數(shù)表達(dá)式;
(2)已知點(diǎn)是拋物線上的一個動點(diǎn),并且點(diǎn)在第一象限內(nèi),連接、,設(shè)點(diǎn)的橫坐標(biāo)為,的面積為,求與的函數(shù)表達(dá)式,并求出的最大值及此時(shí)動點(diǎn)的坐標(biāo);
(3)將點(diǎn)繞原點(diǎn)旋轉(zhuǎn)得點(diǎn),連接、,在旋轉(zhuǎn)過程中,一動點(diǎn)從點(diǎn)出發(fā),沿線段以每秒個單位的速度運(yùn)動到,再沿線段以每秒個單位長度的速度運(yùn)動到后停止,求點(diǎn)在整個運(yùn)動過程中用時(shí)最少是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于任意兩點(diǎn)P1(x1,y1),P2(x2,y2),如果,則稱P1與P2互為“d-距點(diǎn)”.例如:點(diǎn)P1(3,6),點(diǎn)P2(1,7),由d=|3-1|+|6-7|=3,可得點(diǎn)P1與P2互為“3-距點(diǎn)”.
(1)在點(diǎn)D(-2,-2),E(5,-1),F(0,4)中,原點(diǎn)O的“4-距點(diǎn)"是____(填字母);
(2)已知點(diǎn)A(2,1),點(diǎn)B(0,b),過點(diǎn)B作平行于x軸的直線l.
①當(dāng)b=3時(shí),直線l上點(diǎn)A的“2-距點(diǎn)"的坐標(biāo)為_______;
②若直線l上存在點(diǎn)A的2-距點(diǎn)”,求b的取值范圍:
(3)已知點(diǎn)M(1,2),N(3,2),C(m,0),⊙C的半徑為,若在線段MN上存在點(diǎn)P,在⊙C上存在點(diǎn)Q,使得點(diǎn)P與點(diǎn)Q互為“5-距點(diǎn)",直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解七年級學(xué)生身體發(fā)育狀況,學(xué)校抽取一部分學(xué)生測量身高(單位:m),繪制處如下的統(tǒng)計(jì)圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:
(1)圖①中a的值為 ;
(2)求統(tǒng)計(jì)的這組學(xué)生身高數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)如果全校七年級學(xué)生有300人,那么估計(jì)身高大于1.65m的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對垃圾進(jìn)行分類投放,能提高垃圾處理和再利用的效率,減少污染,保護(hù)環(huán)境.為了檢查垃圾分類的落實(shí)情況,某居委會成立了甲、乙兩個檢查組,采取隨機(jī)抽查的方式分別對轄區(qū)內(nèi)的A,B,C,D四個小區(qū)進(jìn)行檢查,并且每個小區(qū)不重復(fù)檢查.
(1)甲組抽到A小區(qū)的概率是多少;
(2)請用列表或畫樹狀圖的方法求甲組抽到A小區(qū),同時(shí)乙組抽到C小區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,AB=AC,點(diǎn) M 在 BA 的延長線上,點(diǎn) N 在 BC 的延長線上,過點(diǎn) C 作CD∥AB 交∠CAM 的平分線于點(diǎn) D.
(1)如圖 1,求證:四邊形 ABCD 是平行四邊形;
(2)如圖 2,當(dāng)∠ABC=60°時(shí),連接 BD,過點(diǎn) D 作 DE⊥BD,交 BN 于點(diǎn) E,在不添加任何輔助線的情況下,請直接寫出圖 2 中四個三角形(不包含△CDE),使寫出的每個三角形的面積與△CDE 的面積相等.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com