【題目】二次函數(shù)的圖象如圖所示,其對稱軸為,則正確的結(jié)論是(

A. abc>0 B. 3a+c<0

C. 4a+2b+c<0 D. b2-4ac<0

【答案】B

【解析】

由拋物線的開口方向判斷a0的關(guān)系,由拋物線與y軸的交點判斷c0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.

:A.圖象開口向下,y軸交于正半軸,對稱軸在y軸右側(cè),能得到:a<0,c>0,->0,b>0,abc<0,故本選項錯誤;
C.當(dāng)x=0x=2時,函數(shù)圖象上的點關(guān)于x=1對稱,由x=0時,函數(shù)值大于0,∴x=2時,函數(shù)值大于0,4a+2b+c>0,故本選項錯誤;

D.函數(shù)圖象與x軸有2個交點,依據(jù)根的判別式可知b24ac>0,故本選項錯誤.

故答案選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為滿足市場需求,新生活超市在端午節(jié)前夕購進價格為3/個的某品牌粽子,根據(jù)市場預(yù)測,該品牌粽子每個售價4元時,每天能出售500個,并且售價每上漲0.1元,其銷售量將減少10個,為了維護消費者利益,物價部門規(guī)定,該品牌粽子售價不能超過進價的200%,請你利用所學(xué)知識幫助超市給該品牌粽子定價,使超市每天的銷售利潤為800元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC在正方形網(wǎng)格中,若點A的坐標(biāo)為(0,3),按要求回答下列問題:

1)在圖中建立正確的平面直角坐標(biāo)系;

2)根據(jù)所建立的坐標(biāo)系,寫出點B和點C的坐標(biāo);

3)作出△ABC關(guān)于x軸的對稱圖形△ABC′.(不用寫作法)

4)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標(biāo)系中的位置如圖所示:

1)作與ABC關(guān)于y軸成軸對稱的A1B1C1;

2)求A1B1C1的面積;

3)在x軸上找一點P,使PA1+PB1的值最小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,美麗的弦圖,蘊含著四個全等的直角三角形.已知每個直角三角形較長的直角邊為a,較短的直角邊為b,斜邊長為c.如圖,現(xiàn)將這四個全圖等的直角三角形緊密拼接,形成飛鏢狀,已知外圍輪廓(實線)的周長為24,OC=3,則該飛鏢狀圖案的面積( 。

A. 6 B. 12 C. 24 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的頂點為,直線與拋物線交于,兩點.是拋物線上一點,過軸,垂足為.如果以,,為頂點的三角形與相似,那么點的坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于點,,交軸于點,點是二次函數(shù)圖象上關(guān)于拋物線對稱軸的一對對稱點,一次函數(shù)的圖象過點,

請直接寫出點的坐標(biāo);

求二次函數(shù)的解析式;

根據(jù)圖象直接寫出一次函數(shù)值大于二次函數(shù)值的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,ABAC3cm,∠B30°,點DBC邊上由CB勻速運動(D不與B、C重合),勻速運動速度為1cm/s,連接AD,作∠ADE30°DE交線段AC于點E

1)在此運動過程中,∠BDA逐漸變   (填“大”或“小”);D點運動到圖1位置時,∠BDA75°,則∠BAD   

2)點D運動3s后到達圖2位置,則CD   .此時△ABD和△DCE是否全等,請說明理由;

3)在點D運動過程中,△ADE的形狀也在變化,判斷當(dāng)△ADE是等腰三角形時,∠BDA等于多少度(請直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,有下列四個結(jié)論:;②;③;④,其中正確的個數(shù)有(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案