【題目】如圖,等腰直角△ABC中,AC=BC,∠ACB=90°,點O分斜邊AB為BO:OA=1: ,將△BOC繞C點順時針方向旋轉(zhuǎn)到△AQC的位置,則∠AQC= .
【答案】105°
【解析】解:連接OQ, ∵AC=BC,∠ACB=90°,
∴∠BAC=∠B=45°,
由旋轉(zhuǎn)的性質(zhì)可知:△AQC≌△BOC,
∴AQ=BO,CQ=CO,∠QAC=∠B=45°,∠ACQ=∠BCO,
∴∠OAQ=∠BAC+∠CAQ=90°,∠OCQ=∠OCA+∠ACQ=∠OCA+∠BCO=90°,
∴∠OQC=45°,
∵BO:OA=1: ,
設(shè)BO=1,OA= ,
∴AQ=1,則tan∠AQO= = ,
∴∠AQO=60°,
∴∠AQC=105°.
【考點精析】掌握等腰直角三角形和旋轉(zhuǎn)的性質(zhì)是解答本題的根本,需要知道等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知數(shù)軸上有三點A、B、C,AB=60,點A對應(yīng)的數(shù)是40.
(1)若,求點C到原點的距離;
(2)如圖2,在(1)的條件下,動點P、Q兩點同時從C、A出發(fā)向右運動,同時動點R從點A向左運動,已知點P的速度是點R的速度的3倍,點Q的速度是點R的速度2倍少5個單位長度/秒.經(jīng)過5秒,點P、Q之間的距離與點Q、R之間的距離相等,求動點Q的速度;
(3)如圖3,在(1)的條件下,O表示原點,動點P、T分別從C、O兩點同時出發(fā)向左運動,同時動點R從點A出發(fā)向右運動,點P、T、R的速度分別為5個單位長度/秒、1個單位長度/秒、2個單位長度/秒,在運動過程中,如果點M為線段PT的中點,點N為線段OR的中點.請問的值是否會發(fā)生變化?若不變,請求出相應(yīng)的數(shù)值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把正整數(shù)1,2,3,4,…,2 009排列成如圖所示的一個表.
(1)用一正方形在表中隨意框住4個數(shù),把其中最小的數(shù)記為x,另三個數(shù)用含x的式子表示出來,從小到大依次是__ __,__ __,__ __;
(2)在(1)前提下,當(dāng)被框住的4個數(shù)之和等于416時,x的值是多少?
(3)在(1)前提下,被框住的4個數(shù)之和能否等于622?如果能,請求出此時x的值;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接AD、AG.
(1)求證:AD=AG;
(2)AD與AG的位置關(guān)系如何,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y= x的圖象如圖所示,則方程ax2+(b﹣ )x+c=0(a≠0)的根的情況( )
A.兩根都大于0
B.兩根都等于0
C.兩根都小于0
D.一根大于0,一根小于0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(3,1),C(-2,-1).
(1)在圖中作出關(guān)于軸對稱的.
(2)寫出點的坐標(biāo)(直接寫答案).
A1_____________,B1______________,C1______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大正方體上截去一個小正方體后,可得到圖的幾何體.
設(shè)原大正方體的表面積為,圖中幾何體的表面積為,那么與的大小關(guān)系是( )
、、、、不確定
小明說:“設(shè)圖中大正方體各棱的長度之和為,圖中幾何體各棱的長度之和為,那么比正好多出大正方體條棱的長度.”若設(shè)大正方體的棱長為,小正方體的棱長為,請問為何值時,小明的說法才正確?
如果截去的小正方體的棱長為大正方體棱長的一半,那么圖是圖中幾何體的表面展開圖嗎?如有錯誤,請在圖中修正.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點,過D點的直線GF交AC于F,交AC的平行線BG于G點,DE⊥DF,交AB于點E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請你判斷BE+CF與EF的大小關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com