如圖,直線(xiàn)y=-2x+4與x軸,y軸分別相交于A,B兩點(diǎn),C為OB上一點(diǎn),且∠1=∠2,則S△ABC=( )

A.1
B.2
C.3
D.4
【答案】分析:本題可先根據(jù)直線(xiàn)的方程求出A、B兩點(diǎn)的坐標(biāo),再根據(jù)角相等可得出三角形相似,最后通過(guò)相似比即可得出S△ABC的大。
解答:解:∵直線(xiàn)y=-2x+4與x軸,y軸分別相交于A,B兩點(diǎn)
∴OA=2,OB=4
又∵∠1=∠2
∴∠BAO=∠OCA
∴△OAC∽△OAB
則OC:OA=OA:OB=1:2
∴OC=1,BC=3,
∴S△ABC=×2×3=3
故選C.
點(diǎn)評(píng):主要考查了一次函數(shù)圖象上點(diǎn)的特征和點(diǎn)的坐標(biāo)的意義以及與相似三角形相結(jié)合的具體運(yùn)用.要把點(diǎn)的坐標(biāo)有機(jī)地和圖形結(jié)合起來(lái)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線(xiàn)y=-2x+b與y軸交于點(diǎn)A,與x軸交于點(diǎn)D,與雙曲線(xiàn)y=
kx
在第一象限交于B、C兩點(diǎn),且AB•BD=2,則k=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線(xiàn)y=-2x+6與x軸、y軸分別交于P、Q兩點(diǎn),把△POQ沿PQ翻折,點(diǎn)O落在R處,則點(diǎn)R的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知如圖,直線(xiàn)y=-2x+2與x軸、y軸分別交于點(diǎn)A、B,以線(xiàn)段AB為直角邊在第一象限內(nèi)作等精英家教網(wǎng)腰直角△ABC,∠BAC=90°,過(guò)C作CD⊥x軸,垂足為D.
(1)求點(diǎn)A、B的坐標(biāo)和AD的長(zhǎng);
(2)求過(guò)B、A、D三點(diǎn)的拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線(xiàn)y1=2x與雙曲線(xiàn)y2=
8x
相交于點(diǎn)A、E.另一直線(xiàn)y3=x+b與雙曲線(xiàn)交于點(diǎn)A、B,與x、y精英家教網(wǎng)軸分別交于點(diǎn)C、D.直線(xiàn)EB交x軸于點(diǎn)F.
(1)求A、B兩點(diǎn)的坐標(biāo),并比較線(xiàn)段OA、OB的長(zhǎng)短;
(2)由函數(shù)圖象直接寫(xiě)出函數(shù)y2>y3>y1的自變量x的取值范圍;
(3)求證:△COD∽△CBF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線(xiàn)y=-2x+8與兩坐標(biāo)軸分別交于P,Q兩點(diǎn),在線(xiàn)段PQ上有一點(diǎn)A,過(guò)點(diǎn)A分別作兩坐標(biāo)軸的垂線(xiàn),垂足分別為B、C.
(1)若四邊形ABOC的面積為6,求點(diǎn)A的坐標(biāo).
(2)有人說(shuō),當(dāng)四邊形ABOC為正方形時(shí),其面積最大,你認(rèn)為正確嗎?若正確,請(qǐng)給予證明;若錯(cuò)誤,請(qǐng)舉反例說(shuō)明.

查看答案和解析>>

同步練習(xí)冊(cè)答案