在△ABC中,AB=AC=2,∠A=90°,取一塊含45°角的直角三角尺,將直角頂點(diǎn)放在斜邊BC邊的中點(diǎn)O處(如圖1),繞O點(diǎn)順時(shí)針方向旋轉(zhuǎn),使90°角的兩邊與Rt△ABC的兩邊AB,AC分別相交于點(diǎn)E,F(xiàn)(如圖2).設(shè)BE=x,CF=y.
(1)探究:在圖2中,線段AE與CF之間有怎樣的大小關(guān)系?試證明你的結(jié)論;
(2)若將直角三角尺45°角的頂點(diǎn)放在斜邊BC邊的中點(diǎn)O處(如圖3),繞O點(diǎn)順時(shí)針方向旋轉(zhuǎn),其他條件不變.
①試寫出y與x的函數(shù)解析式,以及x的取值范圍;
②將三角尺繞O點(diǎn)旋轉(zhuǎn)(如圖4)的過程中,△OEF是否能成為等腰三角形?若能,直接寫出△OEF為等腰三角形時(shí)x的值;若不能,請(qǐng)說明理由.

【答案】分析:(1)本題可通過構(gòu)建三角形,通過證全等來得出AE與CF相等的關(guān)系,連接OA,那么只要證明三角形AEO和OFC全等即可,根據(jù)ASA可得出三角形AEO和OFC全等;
(2)①本題可通過證△BEO∽△COF相似,得出關(guān)于x,y的比例關(guān)系,然后得出x,y的關(guān)系式;
②可根據(jù)①中得出的式子求x的值,注意要分三種情況進(jìn)行討論.
解答:解:(1)線段AE與CF之間有相等關(guān)系.
證明:連接AO.如圖2,
∵AB=AC,點(diǎn)O為BC的中點(diǎn),∠BAC=90°,
∴∠AOC=90°,∠EAO=∠C=45°,AO=OC.
∵∠EOF=90°,∠EOA+∠AOF=90°,∠COF+∠AOF=90°,
∴∠EOA=∠FOC.
∴△EOA≌△FOC,
∴AE=CF.

(2)①連接AO.
如圖4,∵AB=AC,∠BAC=90°,
∴∠C=∠B=45°,
∴∠BEO+∠EOB=135°,
∵∠EOF=45°,
∴∠FOC+∠EOB=135°,
∴∠FOC=∠BEO,
∴△BEO∽△COF,

在Rt△ABC中,BC==2,點(diǎn)O為BC的中點(diǎn),
∴BO=OC=
∵BE=x,CF=y,
,即xy=2,

取值范圍是:0<x≤2.
②△OEF能構(gòu)成等腰三角形.
當(dāng)F與A重合時(shí),x=1,此時(shí)OE=EA(或OE=EF);
當(dāng)E與A重合時(shí),此時(shí)x=2,OA=OF(或EF=OF);
當(dāng)E、F分別在A點(diǎn)的兩邊時(shí),x=,OE=OF,△OEF能構(gòu)成等腰三角形.
點(diǎn)評(píng):本題主要考查旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的性質(zhì)等知識(shí)點(diǎn).
要注意的是旋轉(zhuǎn)變化前后,對(duì)應(yīng)線段、對(duì)應(yīng)角分別相等,圖形的大小、形狀都不改變.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點(diǎn)0為AC的中點(diǎn),OE⊥AB于點(diǎn)E,OE=
32
,以點(diǎn)0為圓心,OA為半徑的圓交AB于點(diǎn)F.
(1)求AF的長;
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使AC與AB重合,點(diǎn)D落在點(diǎn)E處,AE的延長線交CB的延長線于點(diǎn)M,EB的延長線交AD的延長線于點(diǎn)N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點(diǎn)A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點(diǎn)D,B1C1交AC于點(diǎn)E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案