【題目】啟明公司生產(chǎn)某種產(chǎn)品,每件成本是3,售價是4,年銷售量為10萬件.為了獲得更好的效益,公司準備拿出一定的資金做廣告,根據(jù)經(jīng)驗,每年投入的廣告費是x( 萬元),產(chǎn)品的年銷售量是原銷售量的y,y=. 如果把利潤看作是銷售總額減去成本和廣告費:

(1)試寫出年利潤s(萬元)與廣告費x(萬元)的函數(shù)關(guān)系式,并計算廣告費是多少萬元時,公司獲得的年利潤最大?最大年利潤是多少萬元?

(2)(1)中的最大利潤留出3萬元做廣告,其余的資金投資新項目,現(xiàn)有6個項目可供選擇,各項目每股投資金額和預(yù)計年收益如下表:

項目

A

B

C

D

E

F

每股(萬元)

5

2

6

4

6

8

收益(萬元)

0.55

0.4

0.6

0.5

0.9

1

如果每個項目只能投一股,且要求所有投資項目的收益總額不得低于1.6萬元, 問有幾種符合要求的方式?寫出每種投資方式所選的項目.

【答案】1s=-x2+6x+7,當廣告費是3萬元時,公司獲得的最大年利潤是16萬元.

(2)有下列兩種投資方式符合要求:A、BE各一股,B、DE各一股

【解析】

試題(1)根據(jù)年利潤=單利潤×年銷售量即可得到函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)果;

2根據(jù)廣告3萬元,投資項目的收益總額不低于1.6萬元,再仔細分析表中數(shù)據(jù)即可得到結(jié)果.

(1)s=10××(4-3)-x=-x2+6x+7.

x==3 ,

S最大==16.

當廣告費是3萬元時,公司獲得的最大年利潤是16萬元.

(2)用于再投資的資金有=16-3=13萬元.

有下列兩種投資方式符合要求:

A、BE各一股,投入資金為5+2+6=13萬元,

收益為0.55+0.4+0.9=1.85萬元>1.6萬元.

B、DE各一股,投入資金為2+4+6=12萬元<13萬元,

收益為0.4+0.5+0.9=1.8萬元>1.6萬元 .

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,∠B=30°,以點A為圓心,任意長為半徑畫弧分別交AB,AC于點M和N,再分別以點M,N為圓心畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是( 。

AD是BAC的平分線     

②∠ADC=60°

③△ABD是等腰三角形  

點D到直線AB的距離等于CD的長度.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了弘揚泰山文化,某校舉辦了“泰山詩文大賽”活動,從中隨機抽取部分學生的比賽成績,根據(jù)成績(高成都績于50分),繪制了如下的統(tǒng)計圖表(不完整);

請根據(jù)以上信息,解答下列問題:

1)求出、的值;

2)計算扇形統(tǒng)計圖中“第5組”所在扇形圓心角的度數(shù);

3)若該校共有1800名學生,那么成績高于80分的共有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將兩個等腰RtADE、RtABC如圖放置在一起,其中∠DAE=∠ABC90°.點EAB上,ACDE交于點H,連接BH、CE,且∠BCE15°,下列結(jié)論:①AC垂直平分DE;②△CDE為等邊三角形;③tanBCD;④;正確的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+c經(jīng)過A1,0)、B4,0)、C0,3)三點.

1)求該拋物線的解析式;

2)如圖,在拋物線的對稱軸上是否存在點P,使得四邊形PAOC的周長最。咳舸嬖,求出四邊形PAOC周長的最小值;若不存在,請說明理由.

3)在(2)的條件下,點Q是線段OB上一動點,當△BPQ與△BAC相似時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某高速鐵路位于某省南部,是國家“八縱八橫”高速鐵路網(wǎng)的重要連接通道,也是某省“三橫五縱”高速鐵路網(wǎng)的重要組成部分.東起日照,向西貫穿臨沂、曲阜、濟寧、菏澤,與鄭徐客運專線蘭考南站接軌.工程有一段在一條河邊,且剛好為東西走向.B處是一個高鐵維護站,如圖①,現(xiàn)在想過B處在河上修一座橋,需要知道河寬,一測量員在河對岸的A處測得B在它的東北方向,測量員從A點開始沿岸邊向正東方向前進300米到達點C處,測得BC的北偏西30度方向上.

1)求所測之處河的寬度;(結(jié)果保留的十分位)

2)除(1)的測量方案外,請你再設(shè)計一種測量河寬的方案,并在圖②中畫出圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線x軸、y軸分別交于A,B兩點,COB的中點,DAB上一點,四邊形OEDC是菱形,則OAE的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,ABAC,點PBC上的一點,PNAC于點N,PMAB于點M,CGAB于點G點.

1)則線段CG、PMPN三者之間的數(shù)量關(guān)系是  ;

2)如圖,若點PBC的延長線上,則線段CGPM、PN三者是否還有上述關(guān)系,若有,請說明理由,若沒有,猜想三者之間又有怎樣的關(guān)系,并證明你的猜想;

3)如圖,點E在正方形ABCD的對角線AC上,且AEAD,點PBE上任一點,PNAB于點NPMAC于點M,若正方形ABCD的面積是12,請直接寫出PM+PN的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,分別以點A、C為圓心,以大于AC的長為半徑畫弧,兩弧相交于點DE,作直線DEAB于點F,交AC于點G,連接CF,以點C為圓心,以CF的長為半徑畫弧,交AC于點H.若∠A30°,BC2,則AH的長是(  )

A. B. 2C. +1D. 22

查看答案和解析>>

同步練習冊答案