【題目】如圖,在RtABC中,∠C=90°,AB=10,AC=8.線段AD由線段AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°得到,△EFG由△ABC沿CB方向平移得到,且直線EF過點(diǎn)D.

(1)求∠BDF的大。

(2)求CG的長(zhǎng).

【答案】(1)45°;(2)12.5.

【解析】

(1)由旋轉(zhuǎn)的性質(zhì)得,AD=AB=10,∠ABD=45°,再由平移的性質(zhì)即可得出結(jié)論;

(2)先判斷出∠ADE=∠ACB,進(jìn)而得出△ADE∽△ACB,得出比例式求出AE,即可得出結(jié)論.

1)∵線段AD是由線段AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°得到,

∴∠DAB=90°,AD=AB=10,

∴∠ABD=45°,

∵△EFG是△ABC沿CB方向平移得到,

ABEF,

∴∠BDF=ABD=45°;

(2)由平移的性質(zhì)得,AECG,ABEF,

∴∠DEA=DFC=ABC,ADE+DAB=180°,

∵∠DAB=90°,

∴∠ADE=90°,

∵∠ACB=90°,

∴∠ADE=ACB,

∴△ADE∽△ACB,

AB=8,AB=AD=10,

AE=12.5,

由平移的性質(zhì)得,CG=AE=12.5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為二次函數(shù)的圖象,則下列說法:①;;;;,其中正確的個(gè)數(shù)為(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,,,B,E,C在一條直線上下列結(jié)論:的平分線;;線段DE的中線;其中正確的有 ()個(gè).

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,BC=CD,∠C=2∠BAD.O是四邊形ABCD內(nèi)一點(diǎn),且OA=OB=OD.求證:

(1)∠BOD=∠C;

(2)四邊形OBCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個(gè)相等的實(shí)數(shù)根,下列判斷正確的是( 。

A. 1一定不是關(guān)于x的方程x2+bx+a=0的根

B. 0一定不是關(guān)于x的方程x2+bx+a=0的根

C. 1和﹣1都是關(guān)于x的方程x2+bx+a=0的根

D. 1和﹣1不都是關(guān)于x的方程x2+bx+a=0的根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是△ABC外接圓上的動(dòng)點(diǎn),且B,D位于AC的兩側(cè),DEAB,垂足為E,DE的延長(zhǎng)線交此圓于點(diǎn)F.BGAD,垂足為G,BGDE于點(diǎn)H,DC,F(xiàn)B的延長(zhǎng)線交于點(diǎn)P,且PC=PB.

(1)求證:BGCD;

(2)設(shè)△ABC外接圓的圓心為O,若AB=DH,OHD=80°,求∠BDE的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),分別根據(jù)下列條件求出點(diǎn)P的坐標(biāo).

1)點(diǎn)Px軸上;

2)點(diǎn)Py軸上;

3)點(diǎn)Px軸、y軸的距離相等;

4)點(diǎn)Q的坐標(biāo)為,直線軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)DBC的中點(diǎn),點(diǎn)EF分別是線段AD及其延長(zhǎng)線上,且DE=DF,給出下列條件:①BEEC;②BFEC;③AB=AC,從中選擇一個(gè)條件使四邊形BECF是菱形,并給出證明,你選擇的條件是___(只填寫序號(hào)).

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,把圓形井蓋卡在角尺角的兩邊互相垂直,一邊有刻度)之間,即圓與兩條直角邊相切,現(xiàn)將角尺向右平移10cm,如圖2,OA邊與圓的兩個(gè)交點(diǎn)對(duì)應(yīng)CD的長(zhǎng)為40cm則可知井蓋的直徑是(

A. 25cm B. 30cm C. 50cm D. 60cm

查看答案和解析>>

同步練習(xí)冊(cè)答案