【題目】如圖,在四邊形ABCD中,BC=CD,∠C=2∠BAD.O是四邊形ABCD內一點,且OA=OB=OD.求證:
(1)∠BOD=∠C;
(2)四邊形OBCD是菱形.
【答案】證明見解析
【解析】
(1)延長AO到E,利用等邊對等角和角之間關系解答即可;
(2)連接OC,根據全等三角形的判定和性質以及菱形的判定解答即可.
(1)延長OA到E,如圖所示:
∵OA=OB,
∴∠ABO=∠BAO,
又∠BOE=∠ABO+∠BAO,
∴∠BOE=2∠BAO,
同理∠DOE=2∠DAO,
∴∠BOE+∠DOE=2∠BAO+2∠DAO=2(∠BAO+∠DAO)
即∠BOD=2∠BAD,
又∠C=2∠BAD,
∴∠BOD=∠C;
(2)連接OC,
∵OB=OD,CB=CD,OC=OC,
∴△OBC≌△ODC,
∴∠BOC=∠DOC,∠BCO=∠DCO,
∵∠BOD=∠BOC+∠DOC,∠BCD=∠BCO+∠DCO,
∴∠BOC=∠BOD,∠BCO=∠BCD,
又∠BOD=∠BCD,
∴∠BOC=∠BCO,
∴BO=BC,
又OB=OD,BC=CD,
∴OB=BC=CD=DO,
∴四邊形OBCD是菱形.
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,AE平分∠BAD,交BC于點E.
(1)在AD上求作點F,使點F到CD和BC的距離相等;
(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)判斷四邊形AECF是什么特殊四邊形,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.試說明:
(1)△CBE≌△CDF;
(2)AB+DF=AF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠MON=90°,矩形ABCD的頂點A、B分別在邊OM,ON上,當B在邊ON上運動時,A隨之在OM上運動,矩形ABCD的形狀保持不變,其中AB=2,BC=1,運動過程中,點D到點O的最大距離為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知矩形ABCD中,E是AD邊上的一個動點,點F,G,H分別是BC,BE,CE的中點.
(1)求證:△BGF≌△FHC;
(2)設AD=a,當四邊形EGFH是正方形時,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=10,AC=8.線段AD由線段AB繞點A按逆時針方向旋轉90°得到,△EFG由△ABC沿CB方向平移得到,且直線EF過點D.
(1)求∠BDF的大。
(2)求CG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將長為、寬為的長方形白紙,按如圖所示的方法黏合起來,黏合部分寬為.
(1)根據上圖,將表格補充完整:
白紙張數 | 1 | 2 | 3 | 4 | … | 10 | … |
紙條長度 | 40 | 75 | 110 | … | … |
(2)設張白紙黏合后的總長度為,則與之間的關系式是 ;
(3)你認為白紙黏合起來總長度可能為嗎?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,、為相交成度角的兩條公路,在上距點米有一所小學,拖拉機沿方向以每小時千米的速度行駛,在小學周圍米范圍內會受到拖拉機噪音的影響.試問小學是否會受到拖拉機噪音的影響?若受到影響,影響時間有多長?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com