【題目】已知二次函數(shù)的圖象如圖所示,現(xiàn)有下列結(jié)論:①b2-4ac>0;②a>0;③c>0;④9a+3b+c<0。其中結(jié)論正確的有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
【答案】B
【解析】
由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c與0的關(guān)系,然后根據(jù)拋物線與x軸交點(diǎn)及x=3時(shí)二次函數(shù)的值的情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.
①根據(jù)圖示知,二次函數(shù)與x軸有兩個(gè)交點(diǎn),所以△=b2-4ac>0;故①正確;
②根據(jù)圖示知,該函數(shù)圖象的開口向上,
∴a>0;
故②正確;
③該函數(shù)圖象交于y軸的負(fù)半軸,
∴c<0;
故本選項(xiàng)錯(cuò)誤;
④根據(jù)拋物線的對(duì)稱軸方程可知:(-1,0)關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)是(3,0);
當(dāng)x=-1時(shí),y<0,所以當(dāng)x=3時(shí),也有y<0,即9a+3b+c<0;故④正確.
所以①②④正確.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出:某物業(yè)公司接收管理某小區(qū)后,準(zhǔn)備進(jìn)行綠化建設(shè),現(xiàn)要將一塊四邊形的空地(如圖5,四邊形ABCD)鋪上草皮,但由于年代久遠(yuǎn),小區(qū)規(guī)劃書上該空地的面積數(shù)據(jù)看不清了,僅僅留下兩條對(duì)角線AC,BD的長度分別為20cm,30cm及夾角∠AOB為60°,你能利用這些數(shù)據(jù),幫助物業(yè)人員求出這塊空地的面積嗎?
問題顯然,要求四邊形ABCD的面積,只要求出△ABD與△BCD(也可以是△ABC與△ACD)的面積,再相加就可以了.
建立模型:我們先來解決較簡單的三角形的情況:
如圖1,△ABC中,O為BC上任意一點(diǎn)(不與B,C兩點(diǎn)重合),連接OA,OA=a,BC=b,∠AOB=α(α為OA與BC所夾較小的角),試用a,b,α表示△ABC的面積.
解:如圖2,作AM⊥BC于點(diǎn)M,
∴△AOM為直角三角形.
又∵∠AOB=α,∴sinα=即AM=OAsinα
∴△ABC的面積=BCAM=BCOAsinα=absinα.
問題解決:請(qǐng)你利用上面的方法,解決物業(yè)公司的問題.
如圖3,四邊形ABCD中,O為對(duì)角線AC,BD的交點(diǎn),已知AC=20m,BD=30m,∠AOB=60°,求四邊形ABCD的面積.(寫出輔助線作法和必要的解答過程)
新建模型:若四邊形ABCD中,O為對(duì)角線AC,BD的交點(diǎn),已知AC=a,BD=b,∠AOB=α(α為OA與BC所夾較小的角),直接寫出四邊形ABCD的面積= .
模型應(yīng)用:如圖4,四邊形ABCD中,AB+CD=BC,∠ABC=∠BCD=60°,已知AC=a,則四邊形ABCD的面積為多少?(“新建模型”中的結(jié)論可直接利用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個(gè)端點(diǎn)分別在相互垂直的射線OM、ON上滑動(dòng),下列結(jié)論:
①若C、O兩點(diǎn)關(guān)于AB對(duì)稱,則OA=2;
②C、O兩點(diǎn)距離的最大值為4;
③若AB平分CO,則AB⊥CO;
④斜邊AB的中點(diǎn)D運(yùn)動(dòng)路徑的長為;
其中正確的是_____(把你認(rèn)為正確結(jié)論的序號(hào)都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為等腰直角三角形,,點(diǎn)D在AB邊上(不與點(diǎn)A、B重合),以CD為腰作等腰直角,.
(1)如圖1,作于F,求證:;
(2)在圖1中,連接AE交BC于M,求的值。
(3)如圖2,過點(diǎn)E作交CB的延長線于點(diǎn)H,過點(diǎn)D作,交AC于點(diǎn)G,連接GH當(dāng)點(diǎn)D在邊AB上運(yùn)動(dòng)時(shí),式子的值會(huì)發(fā)生變化嗎?若不變,求出該值:若變化請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某石化乙烯廠某車間生產(chǎn)甲、乙兩種塑料的相關(guān)信息如下表,請(qǐng)你解答下列問題:
出廠價(jià) | 成本價(jià) | 排污處理費(fèi) | |
甲種塑料 | 2100(元/噸) | 800(元/噸) | 200(元/噸) |
乙種塑料 | 2400(元/噸) | 1100(元/噸) | 100(元/噸) 另每月還需支付設(shè)備管理、維護(hù)費(fèi)20000元 |
(1)設(shè)該車間每月生產(chǎn)甲、乙兩種塑料各x噸,利潤分別為y1元和y2元,分別求出y1和y2與x的函數(shù)關(guān)系式(注:利潤=總收入-總支出);
(2)已知該車間每月生產(chǎn)甲、乙兩種塑料均不超過400噸,若某月要生產(chǎn)甲、乙兩種塑料共700噸,求該月生產(chǎn)甲、乙塑料各多少噸時(shí),獲得的總利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗(yàn)數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時(shí)內(nèi)其血液中酒精含量y(毫克/百毫升)與時(shí)間(時(shí))的關(guān)系可近似地用二次函數(shù)刻畫;1.5時(shí)后(包括1.5時(shí))y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).
(1)根據(jù)上述數(shù)學(xué)模型計(jì)算:
①喝酒后幾時(shí)血液中的酒精含量達(dá)到最大值?最大值為多少?
②當(dāng)=5時(shí),y=45.求k的值.
(2)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時(shí)屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點(diǎn),延長BC至點(diǎn)F,使CF=BC,連接CD和EF.
(1)求證:DE=CF;
(2)求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線 y=-2x+4分別與 y 軸、x 軸交于點(diǎn) A、點(diǎn) B,點(diǎn) C 的坐標(biāo)為(-2,0),D 為線段 AB上一動(dòng)點(diǎn),連接 CD 交 y 軸于點(diǎn) E.
(1)求出點(diǎn) A、點(diǎn) B 的坐標(biāo);
(2)若,求點(diǎn) D 的坐標(biāo);
(3)在(2)的條件下,點(diǎn) N 在 x 軸上,直線 AB 上是否存在點(diǎn) M,使以 M,N,D,E 為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出 M 點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,BC >AC,點(diǎn)D在BC上,且CA=CD,∠ACB的平分線交AD于點(diǎn)F,E是AB的中點(diǎn).
(1)求證:EF∥BD ;
(2)若∠ACB=60°,AC=8,BC=12,求四邊形BDFE的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com