【題目】如圖,平面直角坐標系內,小正方形網格的邊長為1個單位長度,△ABC的三個頂點的坐標分別為A(﹣1,3),B(﹣4,0),C(0,0)

(1)畫出將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1;
(2)畫出將△ABC繞原點O順時針方向旋轉90°得到△A2B2O;
(3)在x軸上存在一點P,滿足點P到A1與點A2距離之和最小,請直接寫出P點的坐標.

【答案】
(1)解:如圖所示,△A1B1C1為所求做的三角形


(2)解:如圖所示,△A2B2O為所求做的三角形


(3)解:∵A2坐標為(3,1),A3坐標為(4,﹣4),

∴A2A3所在直線的解析式為:y=﹣5x+16,

令y=0,則x= ,

∴P點的坐標( ,0)


【解析】(1)分別將點A、B、C向上平移1個單位,再向右平移5個單位,然后順次連接;(2)根據(jù)網格結構找出點A、B、C以點O為旋轉中心順時針旋轉90°后的對應點,然后順次連接即可;(3)利用最短路徑問題解決,首先作A1點關于x軸的對稱點A3 , 再連接A2A3與x軸的交點即為所求.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的三邊長為a、b、c,且a<b<c,若平行于三角形一邊的直線l將△ABC的周長分成相等的兩部分.設圖中的小三角形①、②、③的面積分別為S1 , S2 , S3 , 則S1 , S2 , S3的大小關系是 (用“<”號連接)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形ABCD和正方形DEFG的邊長分別為2a,2b,點A,D,G在y軸上,坐標原點O為AD的中點,拋物線y=mx2過C,F(xiàn)兩點,連接FD并延長交拋物線于點M.

(1)若a=1,求m和b的值。
(2)求的值。
(3)判斷以FM為直徑的圓與AB所在直線的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某倉儲中心有一斜坡AB,其坡度為i=1:2,頂部A處的高AC為4m,B、C在同一水平地面上

(1)求斜坡AB的水平寬度BC。
(2)矩形DEFG為長方體貨柜的側面圖,其中DE=2.5m,EF=2m,將該貨柜沿斜坡向上運送,當BF=3.5m時,求點D離地面的高。(≈2.236,結果精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑為2,△ABC是⊙O的內接三角形,連接OB、OC.若∠BAC與∠BOC互補,則弦BC的長為(

A.4
B.3
C.2
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標軸上,且點A(0,2),點C(﹣1,0),如圖所示:拋物線y=ax2+ax﹣2經過點B.

(1)求點B的坐標;
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的一元二次方程(k﹣1)x2+4x+1=0有兩個不相等的實數(shù)根,則k的取值范圍是(
A.k<5
B.k<5,且k≠1
C.k≤5,且k≠1
D.k>5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的平面直角坐標系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關于點B1成中心對稱,再作△B2A3B3與△B2A2B1關于點B2成中心對稱,…,如此作下去,則△B2015A2016B2016的頂點A2016的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線 軸于A、B兩點,以AB為直徑的圓交 軸于C、D兩點,則OC的長為

查看答案和解析>>

同步練習冊答案