【題目】如圖,在正五邊形ABCDE中,連接AC、AD、CE,CE交AD于點(diǎn)F,連接BF,下列說法不正確的是()。
A. △CDH的周長等于AD+CD B. FC平分∠BFD C. AC2+BF2=4CD2 D. DE2=EF.CE
【答案】B
【解析】試題分析:首先由正五邊形的性質(zhì)可得AB=BC=CD=DE=AE,BA∥CE,AD∥BC,AC∥DE,AC=AD=CE,根據(jù)有一組鄰邊相等的平行四邊形是菱形即可證得四邊形ABCF為菱形,得CF=AF,即△CDF的周長等于AD+CD,由菱形的性質(zhì)和勾股定理得出AC2+BF2=4CD2,可證明△CDE∽△DFE,即可得出DE2=EFCE.
解:∵五邊形ABCDE是正五邊形,
∴AB=BC=CD=DE=AE,BA∥CE,AD∥BC,AC∥DE,AC=AD=CE,
∴四邊形ABCF是菱形,
∴CF=AF,
∴△CDF的周長等于CF+DF+CD,
即△CDF的周長等于AD+CD,
故A選項(xiàng)正確;
∵四邊形ABCF是菱形,
∴AC⊥BF,
設(shè)AC與BF交于點(diǎn)O,
由勾股定理得OB2+OC2=BC2,
∴AC2+BF2=(2OC)2+(2OB)2=4OC2+4OB2=4BC2,
∴AC2+BF2=4CD2.
故C選項(xiàng)正確;
由正五邊形的性質(zhì)得,△ADE≌△CDE,
∴∠DCE=∠EDF,
∴△CDE∽△DFE,
∴=,
∴DE2=EFCE,
故D選項(xiàng)正確;
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB和CD交于點(diǎn)O,∠COE=90°,OC平分∠AOF,∠COF=35°.
(1)求∠BOD的度數(shù);
(2)OE平分∠BOF嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,平行四邊形的頂點(diǎn)的坐標(biāo)分別是, ,點(diǎn)把線段三等分,延長分別交于點(diǎn),連接, 則下列結(jié)論:; ③四邊形的面積為;④,其中正確的有( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三角形紙片,其中, ,點(diǎn)分別是上的點(diǎn),連接.
(1)如圖1,若將紙片沿折疊,折疊后點(diǎn)剛好落在邊上點(diǎn)處,且,求的長;
(2)如圖2,若將紙片沿折疊,折疊后點(diǎn)剛好落在邊上點(diǎn)處,且.
試判斷四邊形的形狀,并說明理由;
求折痕的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列分式方程解應(yīng)用題:
某商場銷售某種商品,第一個(gè)月將此商品的進(jìn)價(jià)加價(jià)20%作為銷售價(jià),共獲利6000元。第二個(gè)月商場搞促銷活動(dòng),將商品的進(jìn)價(jià)加10%作為銷售價(jià),第二個(gè)月的銷售量比第一個(gè)月增加了100件,并且商場第二個(gè)月比第一個(gè)月多獲利2000元。問此商品進(jìn)價(jià)是多少元?商場第二個(gè)月共銷售多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程數(shù).“燃油效率”越高表示汽車每消耗1升汽油行駛的里程數(shù)越多;“燃油效率”越低表示汽車每消耗1升汽油行駛的里程數(shù)越少.如圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況,下列說法中,正確的是( )
A. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
B. 以低于80 km/h的速度行駛時(shí),行駛相同路程,三輛車中,乙車消耗汽油最少
C. 以高于80 km/h的速度行駛時(shí),行駛相同路程,丙車比乙車省油
D. 以80 km/h的速度行駛時(shí),行駛100公里,甲車消耗的汽油量約為10升
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線和直線外三點(diǎn),按下列要求畫圖,填空:
(1)畫射線;
(2)連接;
(3)延長至,使得;
(4)在直線上確定點(diǎn),使得最小,請(qǐng)寫出你作圖的依據(jù)___________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(14分)如圖,在平面直角坐標(biāo)系中,拋物線y=mx2﹣8mx+4m+2(m>2)與y軸的交點(diǎn)為A,與x軸的交點(diǎn)分別為B(x1,0),C(x2,0),且x2﹣x1=4,直線AD∥x軸,在x軸上有一動(dòng)點(diǎn)E(t,0)過點(diǎn)E作平行于y軸的直線l與拋物線、直線AD的交點(diǎn)分別為P、Q.
(1)求拋物線的解析式;
(2)當(dāng)0<t≤8時(shí),求△APC面積的最大值;
(3)當(dāng)t>2時(shí),是否存在點(diǎn)P,使以A、P、Q為頂點(diǎn)的三角形與△AOB相似?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算與合并同類項(xiàng):
(1)+4.7+(﹣4)﹣2.7﹣(﹣3.5)
(2)11÷(﹣22)﹣3×(﹣11)
(3)16+(﹣2)3+|﹣7|+()×(﹣4)
(4)0.25×(﹣2)2﹣[﹣4÷()2+1]÷(﹣1)2020
(5)5x4+3x2y﹣10﹣3x2y+x4﹣1
(6)(7y﹣3z)﹣(8y﹣5z)
(7)2(2a2+9b)+3(﹣5a2﹣6b)
(8)﹣3(2x2﹣xy)﹣4(x2﹣xy﹣6)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com