【題目】已知三角形紙片,其中, ,分別是上的點,連接.

(1)如圖1,若將紙片沿折疊,折疊后點剛好落在邊上點處,且,的長;

(2)如圖2,若將紙片沿折疊,折疊后點剛好落在邊上點處,且.

試判斷四邊形的形狀,并說明理由;

求折痕的長.

【答案】1;(2邊形是菱形,見解析,

【解析】

1)首先根據(jù)折疊的性質(zhì),得出AE=DE,AF=DF,然后根據(jù)等腰三角形三線合一的性質(zhì),得出∠AFE=90°,判定,再根據(jù)得出的相似比為,即可得解;

2)①由折疊和平行的性質(zhì),得出,即可判定四邊形是菱形;

②首先過點于點,由得出,得出,然后根據(jù),得出,進而得出FNEN,根據(jù)勾股定理,即可求出EF.

1)根據(jù)題意,得AE=DEAF=DF

∴根據(jù)等腰三角形三線合一的性質(zhì),得∠AFE=90°

∵∠EAF=∠BAC,∠AEF=∠ABC

,

的相似比為

又∵, ,

2四邊形是菱形

由折疊的性質(zhì),得AE=EM,AF=FM,∠AEF=∠FEM,∠AFE=∠EFM

∴∠FEM=AFE

∴∠AEF=AFE,∠FEM=∠EFM

,

∴四邊形是菱形

過點于點

, ,

,

又∵

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個袋中均有三張除所標數(shù)值外完全相同的卡片,甲袋中的三張卡片上所標的數(shù)值分別為-7,-1,3,乙袋中的三張卡片上所標的數(shù)值分別為-2,1,6.先從甲袋中隨機取出一張卡片,用x表示取出的卡片上標的數(shù)值,再從乙袋中隨機取出一張卡片,用y表示取出的卡片上標的數(shù)值,把x、y分別作為點A的橫坐標、縱坐標.

(1)用適當?shù)姆椒▽懗鳇cA(x,y)的所有情況;

(2)求點A落在第三象限的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若直線 y mx 8 y nx 3 都經(jīng)過 x 軸上一點 B,與 y 軸分別交于 A 、C

1)寫出 A、C 兩點的坐標,A C ;

2)若ABO=2∠CBO,求直線 AB CB 的解析式;

3)在(2)的條件下若另一條直線過點 B,且交 y 軸于 E,若ABE 為等腰三角形,寫點 E 的坐標(只寫結(jié)果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,連接,以對角線為邊按逆時針方向作矩形,使矩形矩形;再連接,以對角線為邊,按逆時針方向作矩形,使矩形矩形, ..按照此規(guī)律作下去,若矩形的面積記作,矩形的面積記作,矩形的面積記作, ... 的值為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著生活水平的不斷提高,越來越多的人選擇到電影院觀看電影,體驗視覺盛宴,并且更多的人通過網(wǎng)上平臺購票,既快捷又能享受更多優(yōu)惠.某電影城2019年從網(wǎng)上購買張電影票的費用比現(xiàn)場購買張電影票的費用少:從網(wǎng)上購買張電影票的費用和現(xiàn)場購買張電影票的費用共.

1)求該電影城2019年在網(wǎng)上購票和現(xiàn)場購票每張電影票的價格為多少元?

22019年五一當天,該電影城按照2019年網(wǎng)上購票和現(xiàn)場購票的價格銷售電影票,當天售出的總票數(shù)為.五一假期過后,觀影人數(shù)出現(xiàn)下降,于是電影城決定從55日開始調(diào)整票價:現(xiàn)場購票價格下調(diào),網(wǎng)上購票價格不變,結(jié)果發(fā)現(xiàn),現(xiàn)場購票每張電影票的價格每降低元,售出總票數(shù)就比五一當天增加.經(jīng)統(tǒng)計,55日售出的總票數(shù)中有的電影票通過網(wǎng)上售出,其余通過現(xiàn)場售出,且當天票房總收入為元,試求出55日當天現(xiàn)場購票每張電影票的價格為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,把同樣大小的黑色棋子擺放在正多邊形的邊上,按照這樣的規(guī)律擺下去,則第 n個圖形需要黑色棋子的個數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正五邊形ABCDE中,連接AC、AD、CE,CE交AD于點F,連接BF,下列說法不正確的是()。

A. △CDH的周長等于AD+CD B. FC平分∠BFD C. AC2+BF2=4CD2 D. DE2=EF.CE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,為美化校園環(huán)境,某校計劃在一塊長為60,寬為40米的長方形空地上修建一個長方形花圃,并將花圃四周余下的空地修建成同樣寬的甬道設甬道的寬為a

(1)用含a的式子表示花圃的面積;

(2)如果甬道所占面積是整個長方形空地面積的,求此時甬道的寬;

(3)已知某園林公司修建甬道、花圃的造價y1()、y2()與修建面積x(平方米)之間的函數(shù)關(guān)系如圖②所示如果學校決定由該公司承建此項目,并要求修建的甬道寬不少于2米且不超過10,那么甬道的寬為多少米時修建的甬道和花圃的總造價最低?最低總造價為多少元

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某加工廠為趕制一批零件,通過提高加工費標準的方式調(diào)動工人積極性.工人每天加工零件獲得的加工費y(元)與加工個數(shù)x個)之間的部分函數(shù)圖象為折線OA-AB-BC,如圖所示.

1求工人一天加工零件不超過20個時每個零件的加工費.

2)求40≤≤60yx的函數(shù)關(guān)系式.

3)小王兩天一共加工了60個零件,共得到加工費220.在這兩天中,小王第一天加工零件不足20個,求小王第一天加工的零件個數(shù).

查看答案和解析>>

同步練習冊答案