如圖,⊙O的弦AD∥BC,過點(diǎn)D的切線交BC的延長線于點(diǎn)E,AC∥DE交BD于點(diǎn)H,DO及延長線分別交AC、BC于點(diǎn)G、F.
(1)求證:DF垂直平分AC;
(2)求證:FC=CE;
(3)若弦AD=5㎝,AC=8㎝,求⊙O的半徑.

解:(1)∵DE是⊙O的切線,且DF過圓心O
∴DF⊥DE
又∵AC∥DE
∴DF⊥AC
∴DF垂直平分AC    
(2)由(1)知:AG=GC
又∵AD∥BC
∴∠DAG=∠FCG
又∵∠AGD=∠CGF
∴△AGD≌△CGF(ASA)
∴AD=FC    
∵AD∥BC且AC∥DE
∴四邊形ACED是平行四邊形
∴AD=CE  
∴FC=CE   
(3)連結(jié)AO;

∵AG=GC,AC=8cm,∴AG=4cm
在Rt△AGD中,由勾股定理得 GD=
設(shè)圓的半徑為r,則AO=r,OG=r-3
在Rt△AOG中,由勾股定理得 AO2=OG2+AG2
有:r2=(r-3)2+42解得 r= 
∴⊙O的半徑為cm.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的弦AD∥BC,過點(diǎn)D的切線交BC的延長線于點(diǎn)E,AC∥DE交BD于點(diǎn)H,DO及精英家教網(wǎng)延長線分別交AC、BC于點(diǎn)G、F.
(1)求證:DF垂直平分AC;
(2)求證:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,⊙O的弦AD、BC互相垂直,垂足為E,∠BAD=∠α,∠CAD=∠β,且siaα=
3
5
,cosβ=
1
3
,AC=2.
求(1)EC的長;
(2)AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,⊙O的弦AD、BC互相垂直,垂足為E,∠BAD=∠α,∠CAD=∠β,且siaα=數(shù)學(xué)公式,cosβ=數(shù)學(xué)公式,AC=2.
求(1)EC的長;
(2)AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年浙江省金華市義烏市七校聯(lián)考初三數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,⊙O的弦AD∥BC,過點(diǎn)D的切線交BC的延長線于點(diǎn)E,AC∥DE交BD于點(diǎn)H,DO及延長線分別交AC、BC于點(diǎn)G、F.
(1)求證:DF垂直平分AC;
(2)求證:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案