【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作半圓⊙O交AC與點D,點E為BC的中點,連接DE.
(1)求證:DE是半圓⊙O的切線.
(2)若∠BAC=30°,DE=2,求AD的長.
【答案】(1)證明詳見解析;(2)6.
【解析】
試題分析:(1)連接OD,OE,由AB為圓的直徑得到三角形BCD為直角三角形,再由E為斜邊BC的中點,得到DE=BE=DC,再由OB=OD,OE為公共邊,利用SSS得到三角形OBE與三角形ODE全等,由全等三角形的對應角相等得到DE與OD垂直,即可得證;
(2)在直角三角形ABC中,由∠BAC=30°,得到BC為AC的一半,根據(jù)BC=2DE求出BC的長,確定出AC的長,再由∠C=60°,DE=EC得到三角形EDC為等邊三角形,可得出DC的長,由AC﹣CD即可求出AD的長.
試題解析:(1)連接OD,OE,BD,
∵AB為圓O的直徑,
∴∠ADB=∠BDC=90°,
在Rt△BDC中,E為斜邊BC的中點,
∴DE=BE,
在△OBE和△ODE中,
OB=OD,OE=OE,BE=DE,
∴△OBE≌△ODE(SSS),
∴∠ODE=∠ABC=90°,
則DE為圓O的切線;
(2)在Rt△ABC中,∠BAC=30°,
∴BC=AC,
∵BC=2DE=4,
∴AC=8,
又∵∠C=60°,DE=CE,
∴△DEC為等邊三角形,即DC=DE=2,
則AD=AC﹣DC=6.
科目:初中數(shù)學 來源: 題型:
【題目】“閱讀讓自己內(nèi)心強大,勇敢面對抉擇與挑戰(zhàn).”某校倡導學生讀書,下面的表格是該校九年級學生本學期內(nèi)閱讀課外書籍情況統(tǒng)計表.請你根據(jù)統(tǒng)計表中提供的信息,求出表中a、b的值:a=_____,b=_____.
圖書種類 | 頻數(shù) | 頻率 |
科普常識 | 210 | b |
名人傳記 | 204 | 0.34 |
中外名著 | a | 0.25 |
其他 | 36 | 0.06 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知Rt△AOB的兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,且OA、OB的長滿足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分線交x軸于點C過點C作AB的垂線,垂足為點D,交y軸于點E.
(1)求線段AB的長;
(2)求直線CE的解析式;
(3)若M是射線BC上的一個動點,在坐標平面內(nèi)是否存在點P,使以A、B、M、P為頂點的四邊形是矩形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車分別從相距480km的A、B兩地相向而行,乙車比甲車先出發(fā)1小時,并以各自的速度勻速行駛,途徑C地,甲車到達C地停留1小時,因有事按原路原速返回A地.乙車從B地直達A地,兩車同時到達A地.甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車出發(fā)所用的時間x(小時)的關系如圖,結(jié)合圖象信息解答下列問題:
(1)乙車的速度是 千米/時,t= 小時;
(2)求甲車距它出發(fā)地的路程y與它出發(fā)的時間x的函數(shù)關系式,并寫出自變量的取值范圍;
(3)直接寫出乙車出發(fā)多長時間兩車相距120千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果將拋物線y=x2+2向左平移1個單位,那么所得新拋物線的表達式是( 。
A. y=x2+1B. y=x2+3C. y=(x﹣1)2+2D. y=(x+1)2+2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com