如圖所示,矩形紙片ABCD中,AB=4cm,BC=3cm,把∠B、∠D分別沿CE、AG翻折,點(diǎn)B、D分別落在對(duì)角線AC的點(diǎn)B′和D′上,則線段EG的長(zhǎng)度是________.


分析:先連接GE,根據(jù)平行四邊形的判定定理得出四邊形AECG是平行四邊形,由平行四邊形的性質(zhì)可知OG=OE,再根據(jù)勾股定理求出AC的長(zhǎng),再由翻折變換的性質(zhì)求出B′C及AD′的長(zhǎng)度,進(jìn)而可求出B′D′及OD′的長(zhǎng),設(shè)GD′=x,則CG=4-x,在Rt△GCD′中利用勾股定理求出x的值,再在Rt△GD′O中利用勾股定理求出GO的長(zhǎng),進(jìn)而可得出結(jié)論.
解答:解:連接GE交AC于點(diǎn)O,
由題意,得∠GAD′=∠DAC,∠ECB′=∠BCA,
∵四邊形ABCD為矩形,
∴AD∥BC,
∴∠DAC=∠BCA,
∴∠GAC=∠ECA,
∴AG∥CE,
又∵AE∥CG
∴四邊形AECG是平行四邊形,
∴OG=OE,
∵矩形紙片ABCD中,AB=4cm,BC=3cm,
∴△ABC是直角三角形,
∴AC===5cm,
∵△AGD′由△AGD翻折而成,
∴∠GD′A=∠D=90°,AD′=AD=3cm,
同理可得,CB′=3cm,
∴B′D′=1cm,
∴OD′=cm,
設(shè)DG=x,則GD′=x,GC=4-x,CD′=AC-AD′=5-3=2,
∵在Rt△GCD′中,GC2=GD′2+CD′2,即(4-x)2=x2+22,解得x=1.5,
∴GD′=cm,
∵在Rt△GOD′中,GD′=,OD′=,GO2=GD′2+OD′2,
∴GO==cm,
∴EG=2GO=2×=cm.
故答案為:
點(diǎn)評(píng):本題考查的是圖形的翻折變換,解答此類(lèi)題目時(shí)我們常常設(shè)要求的線段長(zhǎng)為x,然后根據(jù)折疊和軸對(duì)稱(chēng)的性質(zhì)用含x的代數(shù)式表示其他線段的長(zhǎng)度,選擇適當(dāng)?shù)闹苯侨切,運(yùn)用勾股定理列出方程求出答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖所示的矩形紙片,先沿虛線按箭頭方向向右對(duì)折,接著將對(duì)折后的紙片沿虛線剪下一個(gè)小圓和一個(gè)小三角形,然后將紙片打開(kāi)是下列圖中的哪一個(gè)(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

把如圖所示的矩形紙片ABCD折疊,B、C兩點(diǎn)恰好落在AD邊上的點(diǎn)P處,已知∠MPN=90°,PM=6cm,PN=8cm,那么矩形紙片ABCD的面積為
 
cm2
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在如圖所示的矩形紙片上作隨機(jī)扎針實(shí)驗(yàn),則針頭扎在陰影區(qū)域的概率為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,矩形紙片ABCD中,AB=4cm,BC=3cm,把∠B、∠D分別沿CE、AG翻折,點(diǎn)B、D分別落在對(duì)角線AC的點(diǎn)B′和D′上,則線段EG的長(zhǎng)度是
10
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•連云港)小明在學(xué)習(xí)“銳角三角函數(shù)”中發(fā)現(xiàn),將如圖所示的矩形紙片ABCD沿過(guò)點(diǎn)B的直線折疊,使點(diǎn)A落在BC上的點(diǎn)E處,還原后,再沿過(guò)點(diǎn)E的直線折疊,使點(diǎn)A落在BC上的點(diǎn)F處,這樣就可以求出67.5°角的正切值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案