在Rt△ABC中,斜邊AB=2,則AB2+BC2+AC2=________.

8
分析:根據(jù)勾股定理即可求得該代數(shù)式的值.
解答:∵AB2=BC2+AC2,AB=2,
∴AB2+BC2+AC2=8.
點評:本題考查了利用勾股定理解直角三角形的能力即:直角三角形兩直角邊的平方和等于斜邊的平方.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013

如圖所示,在Rt△ABC中,∠C=90°,∠A=35°,以直角頂點為旋轉(zhuǎn)中心,將△ABC旋轉(zhuǎn)到的位置,其中分別是A、B對應(yīng)點,且點B在斜邊上,直角邊交AB于D,這時∠BDC的度數(shù)是

[  ]

A.70°
B.90°
C.100°
D.105°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:非常講解·教材全解全析數(shù)學(xué)八年級上(配課標(biāo)北師大版) 課標(biāo)北師大版 題型:044

如圖所示,Rt△ABC中,∠C=90°,∠ABC=60°,△ABC以點C為中心旋轉(zhuǎn)到△的位置,使B在斜邊上,C與AB相交于D,試確定∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:013

如圖所示,在Rt△ABC中,∠C=90°,∠A=35°,以直角頂點為旋轉(zhuǎn)中心,將△ABC旋轉(zhuǎn)到的位置,其中分別是A、B對應(yīng)點,且點B在斜邊上,直角邊交AB于D,這時∠BDC的度數(shù)是

[  ]

A.70°
B.90°
C.100°
D.105°

查看答案和解析>>

同步練習(xí)冊答案