【題目】已知:直線y=x﹣3與x軸、y軸分別交于點A、B,拋物線y=x2+bx+c經(jīng)過點A、B,且交x軸于點C.

(1)求拋物線的解析式;

(2)點P為拋物線上一點,且點P在AB的下方,設(shè)點P的橫坐標(biāo)為m.

試求當(dāng)m為何值時,PAB的面積最大;

當(dāng)PAB的面積最大時,過點P作x軸的垂線PD,垂足為點D,問在直線PD上否存在點Q,使QBC為直角三角形?若存在,直接寫出符合條件的Q的坐標(biāo)若不存在,請說明理由.

【答案】(1)y=x2x﹣3;(2)①當(dāng)m=3時,PAB的面積最大,最大值是9,②在直線PD上否存在點Q(3,)或(3,﹣),使QBC為直角三角形.

【解析】

(1)利用一次函數(shù)圖象上點的坐標(biāo)特征可求出點A、B的坐標(biāo),再利用待定系數(shù)法即可求出拋物線的解析式;

(2)①過點PPDx軸于D,交AB于點E,設(shè)點P的橫坐標(biāo)為m,則點P的坐標(biāo)為(m, m2m﹣3),點E的坐標(biāo)為(m, m﹣3),進而可得出PE的長度,再利用三角形的面積公式即可得出SPAB=﹣m2+6m,利用配方法即可解決最值問題;

②利用二次函數(shù)圖象上點的坐標(biāo)特征可求出點C的坐標(biāo),設(shè)點Q的坐標(biāo)為(3,y),則CQ2=(2+y2,BC2=9+,BQ2=9+(y+3)2,分∠QCB=90°、CBQ=90°及∠CQB=90°三種情況,利用勾股定理即可得出關(guān)于y的方程,解之即可得出結(jié)論.

(1)∵直線y=x﹣3x軸、y軸分別交于點A、B,

∴點A的坐標(biāo)為(6,0),點B的坐標(biāo)為(0,﹣3).

A(6,0)、B(0,﹣3)代入y=x2+bx+c,得:

,解得:,

∴拋物線的解析式為y=x2x﹣3.

(2)①過點PPDx軸于D,交AB于點E,如圖1所示.

設(shè)點P的橫坐標(biāo)為m,則點P的坐標(biāo)為(m,m2m﹣3),點E的坐標(biāo)為(m,m﹣3),

PE=m﹣3﹣(m2m﹣3)=﹣m2+2m,

SPAB=×PE×(AD+DO)=×(﹣m2+2m)×6=﹣m2+6m=﹣(m﹣3)2+9,

∴當(dāng)m=3時,PAB的面積最大,最大值是9.

②當(dāng)y=0時,有x2x﹣3=0,

解得:x1=﹣,x2=6,

∴點C的坐標(biāo)為(﹣,0).

設(shè)點Q的坐標(biāo)為(3,y),

CQ2=(2+y2,BC2=9+,BQ2=9+(y+3)2

當(dāng)∠QCB=90°時,有CQ2+BC2=BQ2

即(2+y2+9+=9+(y+3)2,

解得:y=

當(dāng)∠CBQ=90°時,有BC2+BQ2=CQ2,

9++9+(y+3)2=(2+y2,

解得:y=﹣;

當(dāng)∠CQB=90°時,有BQ2+CQ2=BC2

即(2+y2+9+(y+3)2=9+,

方程無解.

綜上所示:在直線PD上否存在點Q(3,)或(3,﹣),使QBC為直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅爸爸從家騎電瓶車出發(fā),沿一條直路到相距2400m的學(xué)校接小紅回家,小紅爸爸出發(fā)的同時,小紅以96m/min的速度從學(xué)校沿同一條道路步行回家,小紅爸爸趕到學(xué)校校門口等候2min后知道小紅已離校,立即沿原路以原速返回,設(shè)他們出發(fā)的時間為t min,圖示中的折線OABD表示小紅爸爸與家之間的距離S1t之間的函數(shù)關(guān)系,線段EF表示小紅與家之間的距離S2t之間的函數(shù)關(guān)系,則小紅爸爸從家出發(fā)在返回途中追上小紅的時間是(

A.12minB.16minC.18minD.20min

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,反比例函數(shù)的圖象經(jīng)過點

(1)求代數(shù)式mn的值;

(2)若二次函數(shù)的圖象經(jīng)過點B,求代數(shù)式的值;

(3)若反比例函數(shù)的圖象與二次函數(shù)的圖象只有一個交點,且該交點在直線的下方,結(jié)合函數(shù)圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀:

對于兩個不等的非零實數(shù).若分式的值為零,則又因為.所以關(guān)于的方程有兩個根分別為

應(yīng)用上面的結(jié)論解答下列問題:

1)方程的兩個解中較小的一個為    

2)關(guān)于解的方程,首先我們兩邊同加,則 ,兩個解分別為 ,

3)關(guān)于的方程的兩個解分別為,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某市區(qū)九年級學(xué)生每天的健身活動情況,隨機從市區(qū)九年級的12000名學(xué)生中抽取了500名學(xué)生,對這些學(xué)生每天的健身活動時間進行統(tǒng)計整理,作出了如下不完整的統(tǒng)計圖(每組數(shù)據(jù)含最小值不含最大值,統(tǒng)計數(shù)據(jù)全部為整數(shù)),請根據(jù)以下信息解答如下問題:

時間/分

頻數(shù)

頻率

30~40

25

0.05

40~50

50

0.10

50~60

75

b

60~70

a

0.40

70~80

150

0.30

(1)a=_______,b=_______;

(2)請補全頻數(shù)分布直方圖;

(3)學(xué)生每天健身時間的中位數(shù)會落在哪個時間段?

(4)若每天健身時間在60分鐘以上為符合每天“陽光一小時”的規(guī)定,則符合規(guī)定的學(xué)生人數(shù)大約是多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】港在地的正南千米處,一艘輪船由港開出向西航行,某人第一次在處望見該船在南偏西,半小時后,又望見該船在南偏西,則該船速度為________千米/小時.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市預(yù)測某飲料會暢銷、先用1800元購進一批這種飲料,面市后果然供不應(yīng)求,又用8100元購進這種飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.

1)第一批飲料進貨單價多少元?

2)若兩次進飲料都按同一價格銷售,兩批全部售完后,獲利不少于2700元,那么銷售單價至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點P是等邊三角形ABC內(nèi)的一點,且PA=6,PB=8,PC=10,若將PAC繞點A逆時針旋轉(zhuǎn)后,得到P′AB,則APB等于(

A150° B105° C120° D90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, A 時測得某樹(垂直于地面)的影長為 4 ,B 時又測得該樹的影長為 16 若兩次日 照的光線互相垂直,則樹的高度為_____米.

查看答案和解析>>

同步練習(xí)冊答案