【題目】下圖是昌平區(qū)20191月份每天的最低和最高氣溫,觀察此圖,下列說法正確的是( )

A.1月份中,最高氣溫為10℃,最低氣溫為-2℃

B.10號至16號的氣溫中,每天溫差最小為7℃

C.每天的最高氣溫均高于0℃,最低氣溫均低于0℃

D.每天的最高氣溫與最低氣溫都是具有相反意義的量

【答案】B

【解析】

觀察圖中數(shù)據(jù)驗證每個選項即可得出答案.

解:A. 由圖可知在1月份中,最高氣溫為10℃,最低氣溫為-10℃,所以A錯誤;

B. 10號至16號的氣溫中,每天溫差最小為115號時,溫差為7℃,所以B正確;

C. 每天的最高氣溫均115號不高于0℃,最低氣溫均低于0℃,所以C錯誤;

D. 每天的最高氣溫與最低氣溫不是具有相反意義的量,所以D錯誤;

故答案選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+與直線AB交于點(diǎn)A(﹣1,0),B(4,),點(diǎn)D是拋物線A、B兩點(diǎn)間部分上的一個動點(diǎn)(不與點(diǎn)A、B重合),直線CDy軸平行,交直線AB于點(diǎn)C,連接AD,BD.

(1)求拋物線的表達(dá)式;

(2)設(shè)點(diǎn)D的橫坐標(biāo)為m,ADB的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出當(dāng)S取最大值時的點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CEBF,CE=BF.則添加下列條件還不能使△EAC≌△FDB.(  )

A. AB=CDB. AEDFC. E=∠FD. AE=DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:O是直線AB上一點(diǎn),∠AOC50°,OD是∠BOC的角平分線,OEOC于點(diǎn)O.求∠DOE的度數(shù).(請補(bǔ)全下面的解題過程)

解:∵O是直線AB上一點(diǎn),∠AOC50°,

∴∠BOC180°-∠AOC °.

OD是∠BOC的角平分線,

∴∠COD BOC .( )

∴∠COD65°.

OEOC于點(diǎn)O,(已知).

∴∠COE °.( )

∴∠DOE=∠COE-∠COD ° .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列兩個等式:給出定義如下:我們稱使等式ab2ab1成立的一對有理數(shù)a,b同心有理數(shù)對,記為(ab),如:數(shù)對(1,),(2,),都是同心有理數(shù)對”.

1)數(shù)對(﹣2,1),(3,)是同心有理數(shù)對的是__________.

2)若(a3)是同心有理數(shù)對,求a的值;

3)若(m,n)是同心有理數(shù)對,則(﹣n,﹣m  同心有理數(shù)對(填不是),說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=(k≠0)的圖象與一次函數(shù)y=﹣x+1的圖象交于A(﹣2,m),B(n,﹣1)兩點(diǎn).

(1)求反比例函數(shù)的解析式;

(2)連接OA,OB,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點(diǎn)A,BC是數(shù)軸上的三個點(diǎn),其中AB12,且A,B兩點(diǎn)表示的數(shù)互為相反數(shù).

1)請在數(shù)軸上標(biāo)出原點(diǎn)O,并寫出點(diǎn)A表示的數(shù);

2)如果點(diǎn)Q以每秒2個單位的速度從點(diǎn)B出發(fā)向左運(yùn)動,那么經(jīng)過 秒時,點(diǎn)C恰好是BQ的中點(diǎn);

3)如果點(diǎn)P以每秒1個單位的速度從點(diǎn)A出發(fā)向右運(yùn)動,那么經(jīng)過多少秒時PC2PB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,AD∥BC,∠A=∠C,點(diǎn)P在邊AB上.

(1)求證:四邊形ABCD是平行四邊形;

(2)若AB=AD,以過點(diǎn)P的直線為軸,將四邊形ABCD折疊,使點(diǎn)B、C分別落在點(diǎn)B′、C′上,且B′C′經(jīng)過點(diǎn)D,折痕與四邊形的另一交點(diǎn)為Q.在圖2中作出四邊形PB′C′Q(保留作圖痕跡,不必說明作法和理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,兩線相交于F點(diǎn).

(1)若∠BAC=60°,∠C=70°,求∠AFB的大;

(2)若D是BC的中點(diǎn),∠ABE=30°,求證:△ABC是等邊三角形.

查看答案和解析>>

同步練習(xí)冊答案