【題目】如圖1,在四邊形ABCD中,AD∥BC,∠A=∠C,點P在邊AB上.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AB=AD,以過點P的直線為軸,將四邊形ABCD折疊,使點B、C分別落在點B′、C′上,且B′C′經(jīng)過點D,折痕與四邊形的另一交點為Q.在圖2中作出四邊形PB′C′Q(保留作圖痕跡,不必說明作法和理由).
科目:初中數(shù)學 來源: 題型:
【題目】用方程解答下列問題
(1)一件工作,甲單獨做20小時完成,乙單獨做12小時完成,現(xiàn)在先由甲單獨做4小時,余下的由甲乙一起完成余下的部分需要幾小時完成?
(2)王強參加了一場3000米的賽跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分鐘,王強以6米秒的速度跑了多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下圖是昌平區(qū)2019年1月份每天的最低和最高氣溫,觀察此圖,下列說法正確的是( )
A.在1月份中,最高氣溫為10℃,最低氣溫為-2℃
B.在10號至16號的氣溫中,每天溫差最小為7℃
C.每天的最高氣溫均高于0℃,最低氣溫均低于0℃
D.每天的最高氣溫與最低氣溫都是具有相反意義的量
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐
問題背景
折紙是一種許多人熟悉的活動,將折紙的一邊二等分、四等分都是比較容易做到的,但將一邊三等分就不是那么容易了,近些年,經(jīng)過人們的不懈努力,已經(jīng)找到了多種將正方形折紙一邊三等分的精確折法,最著名的是由日本學者芳賀和夫發(fā)現(xiàn)的三種折法,現(xiàn)在被數(shù)學界稱之為芳賀折紙三定理.其中,芳賀折紙第一定理的操作過程及內(nèi)容如下(如圖1):
操作1:將正方形ABCD對折,使點A與點D重合,點B與點C重合.再將正方形ABCD展開,得到折痕EF;
操作2:再將正方形紙片的右下角向上翻折,使點C與點E重合,邊BC翻折至B'E的位置,得到折痕MN,B'E與AB交于點P.則P即為AB的三等分點,即AP:PB=2:1.
解決問題
(1)在圖1中,若EF與MN交于點Q,連接CQ.求證:四邊形EQCM是菱形;
(2)請在圖1中證明AP:PB=2:l.
發(fā)現(xiàn)感悟
若E為正方形紙片ABCD的邊AD上的任意一點,重復“問題背景”中操作2的折紙過程,請你思考并解決如下問題:
(3)如圖2.若 =2.則= ;
(4)如圖3,若=3,則= ;
(5)根據(jù)問題(2),(3),(4)給你的啟示,你能發(fā)現(xiàn)一個更加一般化的結(jié)論嗎?請把你的結(jié)論寫出來,不要求證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,城氣象臺測得臺風中心在城正西方向的處,以每小時的速度向南偏東的方向移動,距臺風中心的范圍內(nèi)是受臺風影響的區(qū)域.
(1)求城與臺風中心之間的最小距離;(2)求城受臺風影響的時間有多長?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:點C是直線AB上一點,AC=6cm,BC=4cm,點M、N分別是AC、BC的中點;
(1)如圖,點C在線段AB上,求線段MN的長;
(2)若點C在線段AB的延長線上,其他條件不變,則線段MN的長為_______cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E,F在菱形ABCD的對邊上,AE⊥BC.∠1=∠2.
(1)判斷四邊形AECF的形狀,并證明你的結(jié)論.
(2)若AE=4,AF=2,試求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有一項資助貧困生的公益活動由你來主持,每位參與者需交贊助費5元,活動規(guī)則如下:如圖是兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,每個轉(zhuǎn)盤被分成6個相等的扇形,參與者轉(zhuǎn)動這兩個轉(zhuǎn)盤,轉(zhuǎn)盤停止后,指針各自指向一個數(shù)字,(若指針在分格線上,則重轉(zhuǎn)一次,直到指針指向某一數(shù)字為止),若指針最后所指的數(shù)字之和為12,則獲得一等獎,獎金20元;數(shù)字之和為9,則獲得二等獎,獎金10元;數(shù)字之和為7,則獲得三等獎,獎金為5元;其余均不得獎;此次活動所集到的贊助費除支付獲獎人員的獎金外,其余全部用于資助貧困生的學習和生活;
(1)分別求出此次活動中獲得一等獎、二等獎、三等獎的概率;
(2)若此次活動有2000人參加,活動結(jié)束后至少有多少贊助費用于資助貧困生?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABD中,AB=AD,將△ABD沿BD對折,使點A翻折到點C,E是BD上一點。且BE>DE,連接AE并延長交CD于F,連接CE.
(1)依題意補全圖形;
(2)判斷∠AFD與∠BCE的大小關(guān)系并加以證明;
(3)若∠BAD=120°,過點A作∠FAG=60°交邊BC于點G,若BG=m,DF=n,求AB的長度(用含m,n的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com