【題目】國(guó)家推行“節(jié)能減排,低碳經(jīng)濟(jì)”政策后,低排量的汽車比較暢銷,某汽車經(jīng)銷商購(gòu)進(jìn)AB兩種型號(hào)的低排量汽車,其中A型汽車的進(jìn)貨單價(jià)比B型汽車的進(jìn)貨單價(jià)多2萬(wàn)元;花50萬(wàn)元購(gòu)進(jìn)A型汽車的數(shù)量與花40萬(wàn)元購(gòu)進(jìn)B型汽車的數(shù)量相同.

1)求AB兩種型號(hào)汽車的進(jìn)貨單價(jià);

2)銷售中發(fā)現(xiàn)A型汽車的每周銷量yA(臺(tái))與售價(jià)x(萬(wàn)元/臺(tái))滿足函數(shù)關(guān)系yA=﹣x+20,B型汽車的每周銷量yB(臺(tái))與售價(jià)x(萬(wàn)元/臺(tái))滿足函數(shù)關(guān)系yB=﹣x+14A型汽車的售價(jià)比B型汽車的售價(jià)高2萬(wàn)元/臺(tái).問A、B兩種型號(hào)的汽車售價(jià)各為多少時(shí),每周銷售這兩種汽車的總利潤(rùn)最大?最大利潤(rùn)是多少萬(wàn)元?

【答案】1A、B兩種型號(hào)汽車的進(jìn)貨單價(jià)為:10萬(wàn)元、8萬(wàn)元;(2A、B兩種型號(hào)的汽車售價(jià)各為14萬(wàn)元、12萬(wàn)元時(shí),每周銷售這兩種汽車的總利潤(rùn)最大,最大利潤(rùn)是32萬(wàn)元..

【解析】

1)由題意根據(jù)購(gòu)進(jìn)兩種型號(hào)的汽車數(shù)量相同列出分式方程即可求解;

2)由題意根據(jù)銷售利潤(rùn)等于每臺(tái)汽車的利潤(rùn)乘以銷售量列出二次函數(shù)關(guān)系即可求解.

解:(1)設(shè)B型汽車的進(jìn)貨單價(jià)為x萬(wàn)元,根據(jù)題意得,解得x8

經(jīng)檢驗(yàn)x8是原分式方程的根.

答:A、B兩種型號(hào)汽車的進(jìn)貨單價(jià)為:10萬(wàn)元、8萬(wàn)元.

2)設(shè)兩種汽車的總利潤(rùn)為w萬(wàn)元,根據(jù)題意得

w=(x+210[﹣(x+2+18]+x8)(﹣x+14

=﹣2x2+48x256

=﹣2x122+32

20,當(dāng)x12時(shí),w有最大值為32

答:AB兩種型號(hào)的汽車售價(jià)各為14萬(wàn)元、12萬(wàn)元時(shí),每周銷售這兩種汽車的總利潤(rùn)最大,最大利潤(rùn)是32萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為豐富學(xué)生的課余生活,某校記劃開展三種拓展課活動(dòng),分別是“文學(xué)賞析”,“趣味數(shù)學(xué)”,“科學(xué)實(shí)驗(yàn)”等項(xiàng)目,要求每位學(xué)生自主選擇其中一項(xiàng)拓展課參加.隨機(jī)抽取該校各年段部分學(xué)生,對(duì)選擇拓展課的意向進(jìn)行調(diào)査,將調(diào)查的結(jié)果制作成以下統(tǒng)計(jì)圖和不完整的統(tǒng)計(jì)表.

某校被調(diào)查學(xué)生選擇拓展課意向統(tǒng)計(jì)表

選擇意向

所占百分比

文學(xué)賞析

   

趣味數(shù)學(xué)

35%

科學(xué)實(shí)驗(yàn)

   

其它

30%

1)該校有2000名學(xué)生,請(qǐng)你估計(jì)大約有多少名學(xué)生參加科學(xué)實(shí)驗(yàn)拓展課,并補(bǔ)全統(tǒng)計(jì)表.

2)該校參加科學(xué)實(shí)驗(yàn)拓展課的學(xué)生隨機(jī)分成A,BC三個(gè)人數(shù)相同的班級(jí).小慧和小明都參加科學(xué)實(shí)驗(yàn)拓展課,求他們同班級(jí)的概率(畫樹狀圖或列表法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:

a+b+c0;ab+c1abc0;④9a3b+c0ca1.其中所有正確結(jié)論的序號(hào)是(  )

A.①②B.①③④C.①②③④D.①②③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,三角形的三條角平分線交于一點(diǎn),這個(gè)點(diǎn)稱為三角形的內(nèi)心(即三角形內(nèi)切圓的圓心) . 現(xiàn)在規(guī)定,如果四邊形的四條角平分線交于一點(diǎn),我們把這個(gè)點(diǎn)稱為“四邊形的內(nèi)心”.

問題提出

1)如圖1,在ABC中,∠C=90°,點(diǎn)OABC的內(nèi)心,若直線DE分別交邊AC、BC于點(diǎn)DE,且點(diǎn)O仍然為四邊形ABED的內(nèi)心,這樣的直線DE可以畫多少條?請(qǐng)?jiān)趫D1中畫出一條符合條件的直線DE,并簡(jiǎn)要說明畫法.

問題探究

2)如圖2,在ABC中,∠C=90° AC=3, BC=4,若滿足(1)中條件的一條直線DE // AB,求此時(shí)線段DE的長(zhǎng);

問題解決

3)如圖3,在ABC中,∠C=90°, AC=3,BC=4,問滿足(1)中條件的線段DE是否存在最小值?如果存在,請(qǐng)求出這個(gè)值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A0,1),B4,2),C2,0).

1)將△ABC沿y軸翻折得到△A1B1C1,畫出△A1B1C1;

2)將△ABC繞著點(diǎn)(﹣1,﹣1)旋轉(zhuǎn)180°得到△A2B2C2,畫出△A2B2C2;

3)線段B2C2可以看成是線段B1C1繞著平面直角坐標(biāo)系中某一點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,直接寫出旋轉(zhuǎn)中心的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E,F(xiàn)分別是矩形ABCD的邊AD,AB上的點(diǎn),若EF=EC,且EF⊥EC.

(1)求證:△AEF≌△DCE;

(2)若CD=1,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:

(1)第1個(gè)等式:a1=; 第2個(gè)等式:a2=;

第3個(gè)等式:a3=; 第4個(gè)等式:a4=;

用含有n的代數(shù)式表示第n個(gè)等式:an=___________=___________(n為正整數(shù));

(2)按一定規(guī)律排列的一列數(shù)依次為,1, , , ,…,按此規(guī)律,這列數(shù)中的第100個(gè)數(shù)是_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】揚(yáng)州某風(fēng)景區(qū)門票價(jià)格如圖所示,有甲、乙兩個(gè)旅行團(tuán)隊(duì),計(jì)劃在端午節(jié)期間到該景點(diǎn)游玩,兩團(tuán)隊(duì)游客人數(shù)之和為100人,若乙團(tuán)隊(duì)人數(shù)不超過40人,甲團(tuán)隊(duì)人數(shù)不超過80人,設(shè)甲團(tuán)隊(duì)人數(shù)為人,如果甲、乙兩團(tuán)隊(duì)分別購(gòu)買門票,兩團(tuán)隊(duì)門票款之和為元.

1)直接寫出關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

2)計(jì)算甲、乙兩團(tuán)隊(duì)聯(lián)合購(gòu)票比分別購(gòu)票最多可節(jié)約多少錢?

3)該景區(qū)每年11月、12月為淡季,景區(qū)決定在這兩個(gè)月實(shí)行門票打五折的優(yōu)惠(打折期間不售團(tuán)體票),以吸引大量游客,提高景區(qū)收入;景區(qū)經(jīng)過調(diào)研發(fā)現(xiàn),隨著接待游客數(shù)的增加,景區(qū)的運(yùn)營(yíng)成本也隨之增加,景區(qū)運(yùn)營(yíng)成本(萬(wàn)元)與兩個(gè)月游客總?cè)藬?shù)(萬(wàn)人)之間滿足函數(shù)關(guān)系式:;兩個(gè)月游客總?cè)藬?shù)(萬(wàn)人)滿足:,且淡季每天游客數(shù)基本相同;為了獲得最大利潤(rùn),景區(qū)決定通過網(wǎng)絡(luò)預(yù)約購(gòu)票的方式控制淡季每天游客數(shù),請(qǐng)問景區(qū)的決定是否正確?并說明理由.(利潤(rùn)門票收入景區(qū)運(yùn)營(yíng)成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以O為原點(diǎn)的直角坐標(biāo)系中,點(diǎn)A,C分別在x軸、y軸的正半軸上,點(diǎn)B在第一象限內(nèi),四邊形OABC是矩形,反比例函數(shù)yx>0)與AB相交于點(diǎn)D,與BC相交于點(diǎn)E,若BE=4CE,四邊形ODBE的面積是8,則k_____

查看答案和解析>>

同步練習(xí)冊(cè)答案