(2010•小店區(qū))如圖,在△ABC中,AB=AC=13,BC=10,D是AB的中點,過點D作DE⊥AC于點E,則DE的長是   
【答案】分析:過A作BC的垂線,由勾股定理易求得此垂線的長,即可求出△ABC的面積;連接CD,由于AD=BD,則△ADC、△BCD等底同高,它們的面積相等,由此可得到△ACD的面積;進而可根據(jù)△ACD的面積求出DE的長.
解答:解:過A作AF⊥BC于F,連接CD;
△ABC中,AB=AC=13,AF⊥BC,則BF=FC=BC=5;
Rt△ABF中,AB=13,BF=5;
由勾股定理,得AF=12;
∴S△ABC=BC•AF=60;
∵AD=BD,
∴S△ADC=S△BCD=S△ABC=30;
∵S△ADC=AC•DE=30,即DE==
故答案為:
點評:此題主要考查了等腰三角形的性質(zhì)、勾股定理、三角形面積的求法等知識的綜合應(yīng)用能力.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2010•小店區(qū))(1)計算:
9
+(-
1
2
-1-
2
sin45°+(
3
-2)0
(2)先化簡,再求值:(
3x
x-1
-
x
x+1
)•
x2-1
2x
,其中x=-3.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年江蘇省蘇州市中考數(shù)學模擬試卷(二)(解析版) 題型:解答題

(2010•小店區(qū))在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=.分別以O(shè)A、OC邊所在直線為x軸、y軸建立如圖所示的平面直角坐標系.
(1)求點B的坐標;
(2)已知D、E分別為線段OC、OB上的點,OD=5,OE=2EB,直線DE交x軸于點F,求直線DE的解析式;
(3)點M是(2)中直線DE上的一個動點,在x軸上方的平面內(nèi)是否存在另一個點N,使以O(shè)、D、M、N為頂點的四邊形是菱形?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2010•小店區(qū))如圖,A是反比例函數(shù)圖象上一點,過點A作AB⊥y軸于點B,點P在x軸上,△ABP面積為2,則這個反比例函數(shù)的解析式為   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山西省中考數(shù)學試卷(解析版) 題型:解答題

(2010•小店區(qū))已知二次函數(shù)y=x2-2x-3的圖象與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C,頂點為D.
(1)求點A、B、C、D的坐標,并在下面直角坐標系中畫出該二次函數(shù)的大致圖象;
(2)說出拋物線y=x2-2x-3可由拋物線y=x2如何平移得到?
(3)求四邊形OCDB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山西省中考數(shù)學試卷(解析版) 題型:填空題

(2010•小店區(qū))如圖,A是反比例函數(shù)圖象上一點,過點A作AB⊥y軸于點B,點P在x軸上,△ABP面積為2,則這個反比例函數(shù)的解析式為   

查看答案和解析>>

同步練習冊答案