【題目】利用我們學(xué)過的知識,可以導(dǎo)出下面這個形式優(yōu)美的等式

a2b2c2abbcac [(ab)2(bc)2(ca)2],

該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對稱性,還體現(xiàn)了數(shù)學(xué)的和諧、簡潔美

(1)請你檢驗這個等式的正確性;

(2)a2 016,b2 017,c2 018,你能很快求出a2b2c2abbcac的值嗎?

【答案】(1)詳見解析;(2)3.

【解析】試題分析:(1)已知等式右邊利用完全平方公式化簡,整理即可作出驗證;

(2)a,b,c的值代入已知等式右邊,求出值即為所求式子的值.

解:(1)等式右邊 (a22abb2b22bcc2a22acc2)

(2a22b22c22ab2bc2ac)

a2b2c2abbcac=等式左邊,所以等式是成立的

(2)原式 [(2 0162 017)2(2 0172 018)2(2 0182 016)2]3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E點為DF上的點,BAC上的點,∠1=2,CD,那么DFAC,請完成它成立的理由

∵∠1=2 (

2=3 ,1=4(

∴∠3=4(

______________ (

∴∠CABD

∵∠CD

∴∠DABD

DFAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠BAC=40°,把ABC繞著點A順時針旋轉(zhuǎn),使得點BCA的延長線上的點D重合,連接CE.

(1)ABC旋轉(zhuǎn)了多少度?

(2)連接CE,試判斷AEC的形狀.

(3)若∠ACE=20°,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:在ABC中,AB、BC、AC三邊的長分別為、,求這個三角形的面積小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點ABC(即ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求ABC的高,而借用網(wǎng)格就能計算出它的面積.

1)請你利用上述方法求出ABC的面積.

2)在圖2中畫DEF,DE、EF、DF三邊的長分別為、

①判斷三角形的形狀,說明理由.

②求這個三角形的面積.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)某公交公司有A,B型兩種客車,它們的載客量和租金如下表:

紅星中學(xué)根據(jù)實際情況,計劃租用A,B型客車共5輛,同時送七年級師生到基地校參加社會實踐活動,設(shè)租用A型客車x輛,根據(jù)要求回答下列問題:

(1)用含x的式子填寫下表:

(2)若要保證租車費用不超過1900元,求x的最大值;

(3)在(2)的條件下,若七年級師生共有195人,寫出所有可能的租車方案,并確定最省錢的租車方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索:

(x-1)(x+1)=x2-1, (x-1)(x2+x+1)=x3-1,

(x-1)(x3+x2+x+1)=x4-1,    (x-1)(x4+x3+x2+x+1)=x5-1,

……

(1)試寫出第五個等式;

(2)試求26+25+24+23+22+2+1的值;

(3)判斷22 017+22 016+22 015+…+22+2+1的值的個位數(shù)字是幾.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)23 (20183)0;     (2)99269×71;

(3) ÷(3xy); (4)(2x)(2x)

(5)(abc)(abc); (6)(3x2y1)2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點是線段所在平面內(nèi)任意一點,分別以為邊,在同側(cè)作等邊和等邊,聯(lián)結(jié)、交于點

(1)如圖1,當(dāng)點在線段上移動時,線段的數(shù)量關(guān)系是:________;

(2)如圖2,當(dāng)點在直線外,且,仍分別以為邊,在 同側(cè)作等邊和等邊,聯(lián)結(jié)、交于點.(1)的結(jié)論是否還存在?若成立,請證明;若不成立,請說明理由.此時是否隨的大小發(fā)生變化?若變化,寫出變化規(guī)律,若不變,請求出的度數(shù);

(3)如圖3,在(2)的條件下,聯(lián)結(jié),求證: 平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用直尺和圓規(guī)作一個角等于已知角的示意圖如下,則要說明∠D′O′C′=∠DOC,需要證明△D′O′C′≌△DOC,則這兩個三角形全等的依據(jù)是__寫出全等的簡寫).

查看答案和解析>>

同步練習(xí)冊答案