【題目】問題背景:在ABC中,AB、BC、AC三邊的長(zhǎng)分別為、、,求這個(gè)三角形的面積小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出格點(diǎn)ABC(即ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.

1)請(qǐng)你利用上述方法求出ABC的面積.

2)在圖2中畫DEFDE、EFDF三邊的長(zhǎng)分別為、、

①判斷三角形的形狀,說明理由.

②求這個(gè)三角形的面積.(直接寫出答案)

【答案】1;(2畫圖見解析;①DEF是直角三角形,理由見解析;②2

【解析】試題分析:1)根據(jù)題目設(shè)置的問題背景,結(jié)合圖形進(jìn)行計(jì)算即可;

2)根據(jù)勾股定理,找到DEEF、DF的長(zhǎng)分別為、、,由勾股定理的逆定理可判斷DEF是直角三角形.

解:(1SABC=3×3×1×2×2×3×1×3=

2)如圖所示:

DE=,EF=2,DF=,

DE2+EF2=DF2,

∴△DEF是直角三角形.

DEF的面積=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC經(jīng)過平移得到的△A′B′C′,△ABC中任意一點(diǎn)P(x1,y1)平移后的對(duì)應(yīng)點(diǎn)為P′(x1+6,y1+4)。

(1)請(qǐng)?jiān)趫D中作出△A′B′C′;(2)寫出點(diǎn)A′、B′、C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y=y1+y2y1x+1成正比例,y2x+1成反比例當(dāng)x=0時(shí),y=﹣5;當(dāng)x=2時(shí),y=﹣7

1)求yx的函數(shù)關(guān)系式;

2)當(dāng)y=5時(shí),x的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次尋寶游戲中,已知尋寶圖上兩標(biāo)志點(diǎn)A和點(diǎn)B的坐標(biāo)分別為(-3,0),(5,0),“寶藏分別埋在C(3,4)D(-2,3)兩點(diǎn).

(1)請(qǐng)建立平面直角坐標(biāo)系,并確定寶藏的位置;

(2)計(jì)算四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知是直線上的點(diǎn),

)如圖,過點(diǎn),并截取,連接、、,判斷的形狀并證明.

)如圖,是直線上的一點(diǎn),直線、相交于點(diǎn),且,求證

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=2x+4

(1)在如圖所示的平面直角坐標(biāo)系中,畫出函數(shù)的圖象;

2)求圖象與x軸的交點(diǎn)A的坐標(biāo),與y軸交點(diǎn)B的坐標(biāo);

(3)在(2)的條件下,求出△AOB的面積;

(4)利用圖象直接寫出:當(dāng)y<0時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用我們學(xué)過的知識(shí),可以導(dǎo)出下面這個(gè)形式優(yōu)美的等式

a2b2c2abbcac [(ab)2(bc)2(ca)2],

該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對(duì)稱性,還體現(xiàn)了數(shù)學(xué)的和諧、簡(jiǎn)潔美

(1)請(qǐng)你檢驗(yàn)這個(gè)等式的正確性;

(2)a2 016,b2 017,c2 018,你能很快求出a2b2c2abbcac的值嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】人們?cè)陂L(zhǎng)期的數(shù)學(xué)實(shí)踐中總結(jié)了許多解決數(shù)學(xué)問題的方法,形成了許多光輝的數(shù)學(xué)想法,其中轉(zhuǎn)化思想是中學(xué)教學(xué)中最活躍,最實(shí)用,也是最重要的數(shù)學(xué)思想,例如將不規(guī)則圖形轉(zhuǎn)化為規(guī)則圖形就是研究圖形問題比較常用的一種方法。

問題提出:求邊長(zhǎng)分別為的三角形面積。

問題解決:在解答這個(gè)問題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出邊長(zhǎng)分別為的格點(diǎn)三角形ABC(如圖①),AB=是直角邊為12的直角三角形斜邊,BC=是直角邊分別為13的直角三角形的斜邊,AC=是直角邊分別為23 的直角三角形斜邊,用一個(gè)大長(zhǎng)方形的面積減去三個(gè)直角三角形的面積,這樣不需求ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積。

(1)請(qǐng)直接寫出圖①中ABC的面積為_______________ 。

(2)類比遷移:求邊長(zhǎng)分別為的三角形面積(請(qǐng)利用圖②的正方形網(wǎng)格畫出相應(yīng)的ABC,并求出它的面積)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),AOB45°,點(diǎn)P、Q分別是邊OA,OB上的兩點(diǎn),且OP2cm.將O沿PQ折疊,點(diǎn)O落在平面內(nèi)點(diǎn)C.

1當(dāng)PCQB時(shí),OQ

當(dāng)PCQB時(shí),求OQ的長(zhǎng).

2)當(dāng)折疊后重疊部分為等腰三角形時(shí),求OQ的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案