如圖①,在正方形ABCD中,E、F分別是BC、CD上的點(diǎn),且∠EAF=45°
,則有結(jié)論EF=BE+FD成立;                                                                                                  小題1:如圖②,在四邊形ABCD中,AB=AD,∠B=∠D=90°,E、F分別是BC、CD上的點(diǎn),且∠EAF是∠BAD的一半,那么結(jié)論EF=BE+FD是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由;
小題2:若將(1)中的條件改為:在四邊形ABCD中,AB=AD,∠B+∠D=180°,延長(zhǎng)BC到點(diǎn)E,延長(zhǎng)CD到點(diǎn)F,使得∠EAF仍然是∠BAD的一半,則結(jié)論EF=BE+FD是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)寫(xiě)出它們之間的數(shù)量關(guān)系,并證明.

小題1:結(jié)論EF= BE+FD成立.
延長(zhǎng)EB到G,使BG=DF,連接AG.

∵∠ABG=∠D=90°, AB=AD,
∴△ABG≌△ADF.
∴AG=AF且∠1=∠2.
∴∠1+∠3=∠2+∠3=∠BAD.
∴∠GAE=∠EAF.
又AE=AE,
∴△AEG≌△AEF.∴EG=EF.
即EF=BE+BG=BE+FD.
小題1:結(jié)論EF=BE+FD不成立,應(yīng)當(dāng)是EF=BE-FD.
在BE上截取BG,使BG=DF,連接AG.

應(yīng)當(dāng)是EF=BE-FD.
在BE上截取BG,使BG=DF,連接AG.
∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,
∴∠B=∠ADF.
∵AB=AD,
∴△ABG≌△ADF.∴AG=AF.
∵∠1=∠2,
∴∠1+∠3=∠2+∠3=∠BAD.
∴∠GAE=∠EAF.
∵AE=AE,
∴△AEG≌△AEF.∴EG=EF
即EF=BE-BG=BE-FD.

小題1:結(jié)論仍然成立.延長(zhǎng)CB到G,使BG=FD,根據(jù)已知條件容易證明△ABG≌△ADF,由此可以推出∠BAG=∠DAF,AG=AF,而∠EAF=∠BAD,所以得到∠DAF+∠BAE=∠EAF,進(jìn)一步得到∠EAF=∠GAE,現(xiàn)在可以證明△AEF≌△AEG,然后根據(jù)全等三角形的性質(zhì)就可以證明結(jié)論成立;
小題1:結(jié)論不成立,應(yīng)為EF=BE-DF,如圖在CB上截取BG=FD,由于∠B+∠ADC=180°,∠ADF+∠ADC=180°,可以得到∠B=∠ADF,再利用已知條件可以證明△ABG≌△ADF,由此可以推出∠BAG=∠DAF,AG=AF,而∠EAF=∠BAD,所以得到∠EAF=∠GAE,現(xiàn)在可以證明△AEF≌△AEG,再根據(jù)全等三角形的性質(zhì)就可以證明EF=EG=EB-BG=EB-DF.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

我們把依次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫做中點(diǎn)四邊形. 如圖,
E、F、G、H分別是四邊形ABCD各邊的中點(diǎn).

(1) 求證:四邊形EFGH是平行四邊形;
(2) 如果我們對(duì)四邊形ABCD的對(duì)角線AC與BD添加一定的條件, 則可使四邊形EFGH成為特殊的平行四邊形, 請(qǐng)你經(jīng)過(guò)探究后直接填寫(xiě)答案:
① 當(dāng)AC=BD時(shí), 四邊形EFGH為_(kāi)_________;
② 當(dāng)AC____BD時(shí), 四邊形EFGH為矩形;
③ 當(dāng)AC=BD且AC⊥BD時(shí), 四邊形EFGH為_(kāi)_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,現(xiàn)有兩個(gè)動(dòng)點(diǎn)P、Q分別從B、D兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒2cm的速度沿BC向終點(diǎn)C移動(dòng),點(diǎn)Q以每秒1cm的速度沿DA向終點(diǎn)A移動(dòng),線段PQ與BD相交于點(diǎn)E,過(guò)E作EF∥BC交CD于點(diǎn)F,射線QF交BC的延長(zhǎng)線于點(diǎn)H,設(shè)動(dòng)點(diǎn)P、Q移動(dòng)的時(shí)間為t(單位:秒,0<t<10)。
小題1:當(dāng)t為何值時(shí),四邊形PCDQ為平行四邊形?
小題2:在P、Q移動(dòng)的過(guò)程中,線段PH的長(zhǎng)是否發(fā)生改變?如果不變,求出線段PH的長(zhǎng);如果改變,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知四邊形ABCD,對(duì)角線AC、BD交于點(diǎn)O.現(xiàn)給出四個(gè)條件:①AC⊥BD;②AC平分對(duì)角線BD;③AD∥BC;④∠OAD=∠ODA,請(qǐng)你以其中的三個(gè)條件作為命題的題設(shè),以“四邊形ABCD為菱形”作為命題的結(jié)論.
小題1:寫(xiě)出一個(gè)真命題,并證明
小題2:寫(xiě)出一個(gè)假命題,并舉出一個(gè)反例說(shuō)明

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在平行四邊形ABCD中,AE⊥BC于E,AE=EB=EC=,且是一元二次方程的根,則平行四邊形ABCD的面積為( ▲ )
A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

由四個(gè)全等的直角三角形圍成一個(gè)大正方形,中間的陰影部分是一個(gè)小正方形的“趙爽弦圖”,若這四個(gè)全等的直角三角形有一個(gè)角為30°,頂點(diǎn)B1,B2,B3,…,B和C1,C2,C3,…,C分別在直線軸上,則第一個(gè)陰影正方形的面積為 ▲ ,第個(gè)陰影正方形的面積為 ▲ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,是矩形紙片,翻折∠、∠使邊、邊恰好落在上。設(shè)分別是落在AC上的兩點(diǎn),分別是折痕的交點(diǎn)。

⑴請(qǐng)根據(jù)題意,利用尺規(guī)作圖作出點(diǎn)F、H及折痕CE、AG;
⑵順次連接G、F、E、H,試確定四邊形GFEH的形狀,并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,△ABC是邊長(zhǎng)為2的等邊三角形,將△ABC沿射線BC向右平移得到△DCE,連接AD、BD,下列結(jié)論錯(cuò)誤的是( ▲ )
A.AD∥BC                       B.AC⊥BD
C.四邊形ABCD面積為        D.四邊形ABED是等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

小明為今年將要參加中考的好友小李制作了一個(gè)(如圖3)正方體禮品盒,六面上各有一字,連起來(lái)就是“預(yù)祝中考成功”,其中“預(yù)”的對(duì)面是“中”,“成”的對(duì)面是“功”,則它的平面展開(kāi)圖可能是                                              (    )

查看答案和解析>>

同步練習(xí)冊(cè)答案