我們把依次連接任意一個四邊形各邊中點所得的四邊形叫做中點四邊形. 如圖,
E、F、G、H分別是四邊形ABCD各邊的中點.

(1) 求證:四邊形EFGH是平行四邊形;
(2) 如果我們對四邊形ABCD的對角線AC與BD添加一定的條件, 則可使四邊形EFGH成為特殊的平行四邊形, 請你經(jīng)過探究后直接填寫答案:
① 當AC=BD時, 四邊形EFGH為__________;
② 當AC____BD時, 四邊形EFGH為矩形;
③ 當AC=BD且AC⊥BD時, 四邊形EFGH為__________.
(1)連接AC、BD,
因為H、G,分別為AD、DC的中點,
所以HG∥AC,
同理EF∥AC,
所以HG∥EF;
同理可知HE∥GF.
于是四邊形EFGH是平行四邊形.
(2)①由于對角線相等,
因為H,G,分別為AD、DC的中點,
所以HG=AC,
同理EF=AC,
所以HG=EF;
同理可知HE=BD,
GF=BD.
又因為AC=BD
所以HE=EF=FG=GH.
又因為是四邊形EFGH是平行四邊形.
所以四邊形EFGH為菱形.
②由于四邊形EFGH是平行四邊形.
當AC⊥BD時,
HE⊥EF,
故四邊形EFGH為矩形;
③由于四邊形EFGH是平行四邊形.
當AC⊥BD時,
HE⊥EF,
故四邊形EFGH為矩形;
AC=BD時,
四邊形EFGH為正方形.
先根據(jù)中位線定理證明:順次連接四邊形各邊中點所得四邊形是平行四邊形;順次連接對角線互相垂直的四邊形各邊中點所得四邊形是矩形;順次連接對角線相等的四邊形各邊中點所得四邊形是菱形;順次連接對角線相等且互相垂直的四邊形各邊中點所得四邊形是正方形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

正方形網(wǎng)格中,每個小正方形的邊長為1.如果把圖1中的陰影部分圖形剪開,拼接成一個新正方形,那么這個新正方形的邊長是      ,請你在圖2中畫出這個正方形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平行四邊形ABCD中,于E,于F,BD與AE、AF分別相交于G、H.
(1)求證:△ABE∽△ADF;
(2)若,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,將一張矩形紙片對折后再對折,然后沿著圖中的虛線剪下,得到①、②兩部分,將②展開后得到的平面圖形是(   )
A.矩形B.平行四邊形C.梯形D.菱形

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

將矩形紙片ABCD按如圖所示的方式折疊,得到菱形AECF.若AB=6,則BC的長為( ▲ )   
A.1B.2C.2D.12
 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知如圖,AD∥BC,∠1=∠3,求證:∠B=∠D

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在ABCD中,對角線相交于點,,若要使ABCD為矩形,則的長應該為(   ).
A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD中,AB∥CD,∠B=∠D,,求四邊形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖①,在正方形ABCD中,E、F分別是BC、CD上的點,且∠EAF=45°
,則有結論EF=BE+FD成立;                                                                                                  小題1:如圖②,在四邊形ABCD中,AB=AD,∠B=∠D=90°,E、F分別是BC、CD上的點,且∠EAF是∠BAD的一半,那么結論EF=BE+FD是否仍然成立?若成立,請證明;若不成立,請說明理由;
小題2:若將(1)中的條件改為:在四邊形ABCD中,AB=AD,∠B+∠D=180°,延長BC到點E,延長CD到點F,使得∠EAF仍然是∠BAD的一半,則結論EF=BE+FD是否仍然成立?若成立,請證明;若不成立,請寫出它們之間的數(shù)量關系,并證明.

查看答案和解析>>

同步練習冊答案