【題目】某小區(qū)便民超市為了了解顧客的消費情況,在該小區(qū)居民中進行調(diào)查,詢問每戶人家每周到超市的次數(shù),下圖是根據(jù)調(diào)查結(jié)果繪制的,請問:
(1)這種統(tǒng)計圖通常被稱為什么統(tǒng)計圖?
(2)此次調(diào)查共詢問了多少戶人家?
(3)超過半數(shù)的居民每周去多少次超市?
(4)請將這幅圖改為扇形統(tǒng)計圖.

【答案】
(1)解:這種統(tǒng)計圖通常被稱為頻數(shù)分布直方圖
(2)解:此次調(diào)查共詢問了戶數(shù)是:
50+300+250+100+100+100+50+50=1000(戶)
(3)解:超過半數(shù)的居民每周去1~2次超市
(4)解:根據(jù)頻數(shù)直方圖中各組的數(shù)據(jù),算出每部分對應的圓心角的度數(shù);

表示

去超市次數(shù)

所占百分比

圓心角度數(shù)

A

5%

18°

B

1

30%

108°

C

2

25%

90°

D

3

10%

36°

E

4

10%

36°

F

5

10%

36°

G

6

5%

18°

H

7

5%

18°


扇形統(tǒng)計圖如下:
【解析】(1)根據(jù)頻數(shù)分布直方圖的意義可知這種統(tǒng)計圖通常被稱為頻數(shù)分布直方圖;(2)此次調(diào)查共詢問的人家=各小組之和即可求解;(3)根據(jù)已知的頻數(shù)分布直方圖可知超過半數(shù)的居民每周去1~2次超市;(4)求出各小組圓心角的度數(shù)即可畫出扇形統(tǒng)計圖。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列事件中,必然事件是(
A.擲一枚硬幣,正面朝上
B.a是實數(shù),|a|≥0
C.某運動員跳高的最好成績是20.1米
D.從車間剛生產(chǎn)的產(chǎn)品中任意抽取一個,是次品

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解某個年級的學習情況,在這個年級抽取了50名學生,對某學科進行測試,將所得成績(成績均為整數(shù))整理后,列出表格:

分組]

50~59分

60~69分

70~79分

80~89分

90~99分

頻率

0.04

0.04

0.16

0.34

0.42


(1)本次測試90分以上的人數(shù)有人;(包括90分)
(2)本次測試這50名學生成績的及格率是;(60分以上為及格,包括60分)
(3)這個年級此學科的學習情況如何?請在下列三個選項中,選一個填在題后的橫線上________.
A.好
B.一般
C.不好

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象經(jīng)過點A(﹣1,0),B(0,),C(2,0),其對稱軸與x軸交于點D

(1)求二次函數(shù)的表達式及其頂點坐標;

(2)若P為y軸上的一個動點,連接PD,則PB+PD的最小值為 ;

(3)M(x,t)為拋物線對稱軸上一動點

①若平面內(nèi)存在點N,使得以A,B,M,N為頂點的四邊形為菱形,則這樣的點N共有 個;

②連接MA,MB,若AMB不小于60°,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,點A、B的坐標分別為(1,4)和(3,0),點C是y軸上的一個動點,且A、B、C三點不在同一條直線上,當△ABC的周長最小時,點C的坐標是(
A.(0,0)
B.(0,1)
C.(0,2)
D.(0,3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列四種說法:

①過一點有且只有一條直線與已知直線平行;

②在同一平面內(nèi),兩條不相交的線段是平行線段;

③相等的角是對頂角;

④在同一平面內(nèi),若直線ABCD,直線ABEF相交,則CDEF相交.

其中,錯誤的是__________________________(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列結(jié)論:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④DA平分∠CDE;⑤SABD:SACD=AB:AC.其中,正確的有個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,BAC=120°,AB=AC=6.P是底邊BC上的一個動點(P與B、C不重合),以P為圓心,PB為半徑的P與射線BA交于點D,射線PD交射線CA于點E.

(1)若點E在線段CA的延長線上,設BP=x,AE=y,求y關于x的函數(shù)關系式,并寫出x的取值范圍.

(2)當BP=時,試說明射線CA與P是否相切.

(3)連接PA,若S△APE=S△ABC,求BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】因式分解:2a2+4a=_______.

查看答案和解析>>

同步練習冊答案