如圖,菱形紙片ABCD中,∠A=60°,將紙片折疊,點A、D分別落在A′、D′處,且A′D′經(jīng)過B,EF為折痕,當D′F⊥CD時,的值為   
【答案】分析:首先延長DC與A′D′,交于點M,由四邊形ABCD是菱形與折疊的性質(zhì),易求得△BCM是等腰三角形,△D′FM是含30°角的直角三角形,然后設CF=x,D′F=DF=y,利用正切函數(shù)的知識,即可求得答案.
解答:解:延長DC與A′D′,交于點M,
∵在菱形紙片ABCD中,∠A=60°,
∴∠DCB=∠A=60°,AB∥CD,
∴∠D=180°-∠A=120°,
根據(jù)折疊的性質(zhì),可得∠A′D′F=∠D=120°,
∴∠FD′M=180°-∠A′D′F=60°,
∵D′F⊥CD,
∴∠D′FM=90°,∠M=90°-∠FD′M=30°,
∵∠BCM=180°-∠BCD=120°,
∴∠CBM=180°-∠BCM-∠M=30°,
∴∠CBM=∠M,
∴BC=CM,
設CF=x,D′F=DF=y,
則BC=CM=CD=CF+DF=x+y,
∴FM=CM+CF=2x+y,
在Rt△D′FM中,tan∠M=tan30°===,
∴x=y,
==
故答案為:
點評:此題考查了折疊的性質(zhì)、菱形的性質(zhì)、等腰三角形的判定與性質(zhì)以及直角三角形的性質(zhì).此題難度較大,注意掌握輔助線的作法,注意折疊中的對應關系,注意數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知菱形ABCD,現(xiàn)將三角形紙片的一個角的頂點與A重合,適當?shù)乩@點A旋轉該三角形紙片,使∠EAF=∠ABC.連接AC.
(1)如圖1,若∠ABC=90°,求證:CE+CF=
2
AC;
(2)如圖2,若∠ABC=60°,線段CE、CF、AC三條線段的數(shù)量關系是否改變?若改變直接寫出結論;若不改變請說明理由;
(3)在(2)的條件下,若菱形ABCD的周長是12,CF=1,求線段AF的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

一張等腰直角三角形紙片ABC,∠A=90°,AB=AC=2
2
,另有一張等腰梯形紙片DEFG,DG∥EF,DE=GF.現(xiàn)將兩張紙片疊放在一起(如圖1),此時梯形的下底EF與BC邊完全重合,梯形的兩腰分別落在AB,AC上,且D,G恰好分別是AB,AC的中點.
(1)求BC的長及等腰梯形DEFG的面積;
(2)實驗與探究(備用圖供實驗、探究使用)
如圖2,固定△ABC,將等腰梯形DEFG以每秒1厘米的速度沿射線BC方向平行移動,宜到點E與點C重合時停止,設運動時間為x秒時,等腰梯形平移到D1EFG1的位置.
①當x為何值時,四邊形DBED1是菱形,并說明理由.
②設△ABC與等腰梯形D1EFG1重疊部分的面積為y,直接寫出y與x之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省興化市九年級上學期期中考試數(shù)學試卷(解析版) 題型:選擇題

如圖,在一張△ABC紙片中, ∠C=90°, ∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開,計劃拼出以下四個圖形:①鄰邊不等的矩形;②等腰梯形;③有一個角為銳角的菱形;④正方形.那么以上圖形一定能被拼成的個數(shù)為(      )

A.1       B.2         C.3          D.4

 

 

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省泰州市海陵區(qū)九年級上學期期末考試數(shù)學卷 題型:選擇題

如圖,在一張△ABC紙片中, ∠C=90°, ∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開,計劃拼出以下四個圖形:①鄰邊不等的矩形;②等腰梯形;③有一個角為60°的菱形;④正方形.那么以上圖形一定能被拼成的個數(shù)為(      )

A.1       B.2         C.3          D.4

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆江蘇省海陵區(qū)九年級第一學期期末考試數(shù)學卷 題型:選擇題

如圖,在一張△ABC紙片中, ∠C=90°, ∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開,計劃拼出以下四個圖形:①鄰邊不等的矩形;②等腰梯形;③有一個角為60°的菱形;④正方形.那么以上圖形一定能被拼成的個數(shù)為(      )

 

A.1       B.2         C.3          D.4

 

查看答案和解析>>

同步練習冊答案