【題目】如圖,在邊長為4的正方形ABCD中,P是BC邊上一動點(不含B、C兩點),將△ABP沿直線AP翻折,點B落在點E處;在CD上有一點M,使得將△CMP沿直線MP翻折后,點C落在直線PE上的點F處,直線PE交CD于點N,連接MA,NA.則以下結(jié)論中正確的有 (寫出所有正確結(jié)論的序號)

①△CMP∽△BPA;

②四邊形AMCB的面積最大值為10;

③當P為BC中點時,AE為線段NP的中垂線;

④線段AM的最小值為;

⑤當△ABP≌△ADN時,BP=

【答案】①②⑤.

【解析】

試題分析:∵∠APB=∠APE,∠MPC=∠MPN,∵∠CPN+∠NPB=180°,∴2∠NPM+2∠APE=180°,∴∠MPN+∠APE=90°,∴∠APM=90°,∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,∴∠CPM=∠PAB,∵四邊形ABCD是正方形,∴AB=CB=DC=AD=4,∠C=∠B=90°,∴△CMP∽△BPA.故①正確,設(shè)PB=x,則CP=4﹣x,∵△CMP∽△BPA,∴,∴CM=x(4﹣x),∴S四邊形AMCB=[4+x(4﹣x)]×4==,∴x=2時,四邊形AMCB面積最大值為10,故②正確,當PB=PC=PE=2時,設(shè)ND=NE=y,在RT△PCN中,解得,∴NE≠EP,故③錯誤,作MG⊥AB于G,∵AM==,∴AG最小時AM最小,∵AG=AB﹣BG=AB﹣CM=4﹣x(4﹣x)=,∴x=1時,AG最小值=3,∴AM的最小值==5,故④錯誤.

∵△ABP≌△ADN時,∴∠PAB=∠DAN=22.5°,在AB上取一點K使得AK=PK,設(shè)PB=z,∴∠KPA=∠KAP=22.5°.∵∠PKB=∠KPA+∠KAP=45°,∴∠BPK=∠BKP=45°,∴PB=BK=z,AK=PK=z,∴z+z=4,∴z=,∴PB=故⑤正確.

故答案為:①②⑤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算正確的是( 。
A.a2+a3=a5
B.(a23=a5
C.2a3a=6a
D.(2a3b)2=4a6b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=52°,∠ABC與∠ACB的角平分線交于D1,∠ABD1與∠ACD1的角平分線交于點D2,依此類推,∠ABD4與∠ACD4的角平分線交于點D5,則∠BD5C的度數(shù)是 ( )

A. 56° B. 60° C. 68° D. 94°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點M(﹣3,﹣5)是由N先向上平移4個單位,再向左平移3個單位而得到,則點N的坐標為( 。
A.(0,﹣9)
B.(﹣6,﹣1)
C.(1,﹣2)
D.(1,﹣8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于點O,點D、E分別在邊AC、BC上,且AD=CE,連結(jié)DE交CO于點P,給出以下結(jié)論:

①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,則四邊形CEOD的面積為;④,其中所有正確結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把多項式 3xy2+2yx3 分解因式結(jié)果正確的是(

A.xy232x2yB.xy232x+2y

C.xy23+2x2yD.yx23+2x2y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】感知:如圖1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC

探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求證:DB=DC

應(yīng)用:如圖3,四邊形ABCD中,∠B=45°,∠C=135°,DB=DC=a,則AB﹣AC= (用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在二次函數(shù)y=﹣x2+2x+1的圖象中,若yx的增大而減少,則x的取值范圍是( 。

A.x1B.x1C.x<﹣1D.x>﹣1

查看答案和解析>>

同步練習(xí)冊答案